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ABSTRACT
Unveiling human mobility patterns is an important task for many
downstream applications like point-of-interest (POI) recommenda-
tion and personalized trip planning. Compelling results exist in var-
ious sequential modeling methods and representation techniques.
However, discovering and exploiting the context of trajectories in
terms of abstract topics associated with the motion can provide a
more comprehensive understanding of the dynamics of patterns.We
propose a new paradigm for moving pattern mining based on learn-
ing trajectory context, and a method – Context-Aware Variational
Trajectory Encoding and Human Mobility Inference (CATHI) – for
learning user trajectory representation via a framework consisting
of: (1) a variational encoder and a recurrent encoder; (2) a varia-
tional attention layer; (3) two decoders. We simultaneously tackle
two subtasks: (T1) recovering user routes (trajectory reconstruction);
and (T2) predicting the trip that the user would travel (trajectory
prediction). We show that the encoded contextual trajectory vectors
e�ciently characterize the hierarchical mobility semantics, from
which one can decode the implicit meanings of trajectories. We
evaluate our method on several public datasets and demonstrate
that the proposed CATHI can e�ciently improve the performance
of both subtasks, compared to state-of-the-art approaches.
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1 INTRODUCTION
The past decade has witnessed a rapid growth of both academic and
practical interest on mining human mobility patterns from location-
based social networks (LBSN) such as Twitter and Foursquare. Avail-
ability of large volumes of LBSN data has spurred research in study-
ing user behavior and movement patterns [13, 31], point-of-interest
(POI) recommendation [16], trip planning [22], along with various
privacy-preserving issues [28].

Majority of the existing studies focus on modeling the sequen-
tial patterns at location- or POI-level. Various techniques such as
leveraging Markov Chain (MC), Matrix Factorization (MF), Recur-
rent Neural Networks (RNN), or the word2vec framework have
been developed towards various application tasks. For example, in
POI recommendation, the state-of-the-art methods are MF [20] and
RNN [26] based models that learn user preference over POIs and
include the contextual in�uence of neighboring POIs for generat-
ing implicit user-location feedback matrices [25]. More recently,
the representation learning such as word2vec [27] has been in-
troduced for embedding POI (and associated features) into latent
space [12, 13, 40]. These approaches operate at a �ne-grained POI
level – which is also the case for trip recommendations, where a
sequence of POIs are organized as an itinerary, with various other
features (e.g., location, time, distance, user pro�le and social inter-
actions, etc.) incorporated. In addition, it is expected to learn the
POI transitions with MC model [6] or maximize the reward of the
selected POIs, e.g., through Monte Carlo Tree Search (MCTS) [21].

Complementary to these, some trajectory mining tasks aim at
uncovering implicit mobility patterns, clustering or classifying tra-
jectories – which are typically reduced to location-level learning.
For example, sequential and periodic pattern [9, 35] mining re-
quires measuring location or trajectory (a sequence of locations)
similarity with various time-series metrics [8], while trajectory
clustering groups together similar ones. However, the Trajectory
Context Learning (TCL) focuses on understanding and encoding
the semantics of a trajectory at trajectory level. As a higher level
of mobility semantic learning, discovering the context of trajecto-
ries may enable more comprehensive understanding of the human
mobility patterns and provide additional bene�ts for downstream
applications such as POI/trip recommendation.

In this paper, we take initial steps towards learning trajectory
context by adapting the problem to an encoder-decoder framework,
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inspired by recent progress of representation learning in natural lan-
guages processing (NLP). Speci�cally, we investigate the TCL prob-
lem by simultaneously addressing two (sub)tasks: (T1) recovering
the user’s route by (Trajectory Reconstruction) and (T2) predicting
the trip that she would travel (Trajectory Prediction). To accomplish
this, we propose the Context-Aware Variational Trajectory Encoding
and Human Mobility Inference (CATHI) method for embedding the
contexts of trajectories in an unsupervised manner within a seq2seq
framework which consists of two encoders and two decoders, tuned
with a novel variational attention mechanism. The two sub-tasks of
TCL problem are then trained in parallel with the proposed model.
In summary, our main contributions are:

• We address the TCL problem in LBSN applications as a novel
learning paradigm for analyzing human mobility patterns. We
propose an approach for encoding the semantics of trajectories
and inferring the trajectory context, which is the �rst context-
aware trajectory learning model and opens a new perspective
for understanding user check-in behaviors.
• The proposed CATHI method leverages two variational latent fac-
tors which are respectively the traditional latent variables and the
variational hidden state attention, for learning trajectory-level
context. This novel variational architecture is not only capable
of estimating the probability density and optimizing the lower
bound of the data likelihood, but also captures the sequential and
temporal characteristics of human mobility.
• We address the trajectory prediction and reconstruction simulta-
neously using the proposed CATHI method, which is evaluated
on several public LBSN datasets and compared to competing mod-
els, demonstrating that it achieves state-of-the-art performance,
which also re�ects upon the e�ciency of TCL.

2 OUR PROPOSED METHOD: CATHI
We now formally de�ne the TCL problem and introduce the CATHI
method consisting of two subtasks – (T1): trajectory reconstruction
and (T2): trajectory prediction.

Given a set of POIs {l1, l2, ..., lm } and a set of trajectories T =
{T1,T2, ...,Tn }, where Ti is a sequence of POIs generated by a par-
ticular user, let Tr denote the training data consisting of a set of
variable-length trajectories generated by certain users in a particu-
lar area (e.g., in a city or a scenic spot). We denote the t th POI for
trajectory Ti as lti and its embedding vector (with word2vec [27])
as vti 2 Rd , where d is the POI embedding dimensionality.

2.1 Overview
The main objective of TCL is to produce two surrounding trajec-
tories Tsi = {Ti�1,Ti+1} for a given trajectory Ti 2 Tr . Gener-
ally, given a tuple < Ti�1,Ti ,Ti+1 >, where Ti is the ith trajec-
tory in Tr , we are interested in coupling the reconstruction of
Ti�1 and prediction of Ti+1. That is, let Ti = {l1i , l2i , ..., lNi } be a
trajectory with N POIs, TCL tries to construct the previous tra-
jectory Ti�1 = {l1i�1, l2i�1, ..., l

Q
i�1} and predict the next trajectory

Ti+1 = {l1i+1, l2i+1, ..., lMi+1}, respectively.
To this end, our CATHI model consists of four components

(shown in Figure 1): (1) recurrent encoder, (2) variational encoder, (3)
variational attention layer, and (4) two decoders. More speci�cally, a

recurrent encoder maps a sequence of POIs to a set of hidden states
{h1i , h2i , ..., hNi }. Meanwhile, a variational encoder learns the distri-
bution of the latent variable z. Subsequently, a variational attention
on the hidden states of recurrent encoder learns the distribution
of another latent variable c. Finally, two decoders, conditioned on
two latent variables z and c, are employed to generate the previous
trajectory and the next one respectively. Both decoders have a two-
layer architecture in which the �rst-layer decoder Dec1 alone can
be employed to reconstruct the surrounding trajectories, and the
second-layer decoder Dec2 is added to re�ne the results of Dec1.

2.2 Trajectory Context Encoding
Throughout this work, the Trajectory Context Encoding (TCE) re-
lies on variational autoencoder [19] and Long Short-Term Memory
(LSTM) [18] – one spatio-temporal LSTM for the encoder and two
variants of LSTM for the decoders. Details will be presented below.

2.2.1 Recurrent Trajectory Encoder. The recurrent encoder is a bi-
directional LSTM. At each time step t , one can obtain an annotation
for each POI by concatenating the forward and backward hidden
states, i.e., hti = [

�!
h t
i ;
 �
h t
i ], interpreted as the representation of the

trajectory l1i , l
2
i , ..., l

t
i . The last hidden state hNi thus represents the

full trajectory Ti .

……Ti =

hv
j

ctti+1

……

ctti�1

l1i+1 lMi+1
……

eui�1

sti�1 sti+1

eui+1

z

ci�1 z zci+1

Decoders
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attention

Recurrent 
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Variational
encoder

Ti�1 = = Ti+1

Decoders

Figure 1: Trajectory context encodingwith two encoders and
two decoders with each having two layers.

Previous analysis shows that POIs’ contextual information, such
as geographical location and social information, has in�uence over
user check-in behavior. Integrating them into the model might be
helpful for better representation of users. However, vanilla LSTM
does not consider the contextual information associated with POIs.
To address this limitation, we present an extension of LSTM that is
capable of encoding the spatio-temporal features in check-ins.

Given a sequence of check-ins l1i , · · · , lti , · · · , lNi , each lti asso-
ciated with a check-in time � ti and a geo-location �ti , we compute
both time interval and distance between adjacent check-ins as
�� ti
= � ti � � t�1i and ��ti

= �ti � �t�1i , t 2 [1,N ]. Then we add a
time gate tti and a geographical gate gti and modify the candidate
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gate h̃ti as

tti = � (Wtvti + � ([�� ti ;�
t
i ]Wt ) + bt )

gti = � (W�vti + � (��tiW� ) + b� )

[iti , f
t
i , o

t
i ] = � (W vti +Uht�1i )

h̃ti = tanh(W 0vti +U
0(tti � gti � ht�1i )) (1)

mt
i = ftim

t
i�1 + i

t
i h̃

t
i

hti = tanh(mt
i ) � oti

where vti is the embedding vector of the POI lti , [�� tt ;�
t
t ] is a con-

catenation of time interval and the current check-in time; iti , f
t
i , o

t
i

are input, forget and output gates in vanilla LSTM;W and U are
parameter matrices w.r.t di�erent gates. Now the two new gates cap-
ture spatio-temporal preference of users, which is used to control
the in�uence of previous hidden state ht�1i in Eq.(1).

Note that above contextual LSTM is employed in the recurrent
encoder. The hidden state hti contains the information from both the
preceding POIs and the following POIs in Ti . Due to the tendency
of RNNs to better represent recent inputs, the hidden state hti will
focus more on the POIs around current check-in lti (cf. [1]). Instead
of only attention to di�erent words in NLP encoder such as [5], we
follow the typical assumption in trajectory modeling that adjacent
POIs have more (related) information than long-distance ones, both
temporally and geographically. Such constraints are achieved by
the proposed spatio-temporal gates. This sequence of hidden states,
combined with the following variational variables, can later be used
to compute context vectors in the decoder.

2.2.2 Variational Trajectory Encoder. We use a variational en-
coder [19] for encoding the trajectory as a latent variable z, which is
then used to reconstruct the original trajectory under the generative
model: given a trajectory Ti , its likelihood is

logp� (Ti ) = logp� (Ti )
Z

z
q� (z |Ti )dz �, L (Ti )

=Ez⇠q� (z |Ti )[logp� (Ti |z)] � KL
f
q� (z |Ti ) | |p� (z)

g
(2)

where q� (z |Ti ) is an approximation to the true posterior
p� (z |Ti ) (a.k.a recognition model or encoder) parameterized by �.
KL

f
q� (·) | |p� (·)

g
is the KL divergence between the learned latent

posterior distribution q(z |Ti ) and the prior p (z) (for brevity, we
will omit the parameters � and � in subsequent formulas). Since
the objective (of the model) is to minimize the KL divergence be-
tween the proposal q(z |Ti ) and the true distribution p (z |Ti ) – we
can alternatively maximize the evidence lower bound (ELBO)L (Ti )
w.r.t. both � and �, which are jointly trained with separate neural
networks such as multi-layer perceptrons.

2.2.3 Variational a�ention. Traditional attention mechanisms [1]
are used for dynamically aligning the input and output sequences.
Speci�cally, we compute a probabilistic distribution by

��t =
exp(s�i±1W

|hti )PN
t 0=1 exp(s

�
i±1W

|ht 0i )
(3)

where s�i±1 denotes the �
th hidden state of previous (next) trajec-

tory, hti is t
th hidden hidden state of recurrent encoder, andW is

the parameter matrix needed to be learneded. Then, the attention
vector ci±1 is calculated by summing the weighted input:

c�i±1 =
NX

t=1
��thti (4)

which is fed into the decoder at �th step. We will denote the atten-
tion vector as c for simplicity.

However, if we directly use above attention vector c, this de-
terministic attention is powerful enough to reconstruct the input
and may eliminate the in�uence of the variational encoder – a.k.a.
“bypassing" phenomena in combining VAE and seq2seq models [3].
Therefore, we introduce a variational attention on the hidden states
of the recurrent encoder inspired by [2]. That is, the attention vector
c is also treated as a latent factor as z, both of which are combined
to reconstruct the input data by maximizing the ELBO:

L (Ti ) = E[logp (Ti |z, c)]�KL [q (z, c |Ti ) | |p (z, c)]
= E[logp (Ti |z, c)]��KL [q (z |Ti ) | |p (z )]

��KL [q (c |Ti ) | |p (c)] (5)

which is derived based on the fact that c and z are conditionally
independent given Ti . The prior p (c) is initialized via a Gaussian
p (c) = N (h̄i , I) with h̄i as the mean of the hidden states of the
recurrent encoder. At the early stage of variational training, the
terms KL [q(·|Ti ) | |p (·)] in Eq.(5) may discourage encoding inter-
esting information into the latent variables z and c, thereby easily
resulting in model collapse – largely because of the strong learning
capability of autoregressive models such as RNN as observed in [3].
One e�cient solution is to control the weight of KL-divergence
term by gradually increasing its co-e�ciencies � and� (from 0 to
1), which is also called KL cost annealing [3].

2.2.4 Trajectory Decoders. As mentioned above, there are two
decoders in CATHI: two LSTMs trained to reconstruct the previous
trajectory Ti�1 and predict the next trajectory Ti+1, respectively.
– Decoder 1. In the case of trajectory Ti+1 decoding, the �rst de-
coder Dec1 predict next POI lti+1 given: (1) all the previously pre-
dicted POIs {l1i+1, l2i+1, ..., lt�1i+1 }; (2) the variational attention vector
c; and (3) the variational latent variable z. For example, the decoder
is trained to maximize the probability of {l1i+1, l2i+1, ..., lMi+1} given
trajectoryTi which can be decomposed into the ordered conditional
probabilities:

p ({l1i+1, l2i+1, ..., lMi+1}) =
MY

t=1
p (lti+1 |l<ti+1, c, z) (6)

where l<t⇤ denote previous t � 1 POIs in the next trajectory. Each
conditional probability p (lti+1 |l<ti+1, c, z) depends on the context vec-
tors c, z and all the previous POIs {l1i+1, l2i+1, ..., lt�1i+1 }. With the �rst
LSTM decoder, the conditional probability can be modeled as:

p (lti+1 |l<ti+1, c, z) = LSTM(vt�1i+1 , c, z, s
t�1
i+1 ) (7)

where st�1i+1 is the hidden state of the decoder LSTM.
Therefore, given a tuple < Ti�1,Ti ,Ti+1 >, the objective of tra-

jectory context encoding is to maximize the log-probabilities for
the previous and next trajectories of Ti :

J = log
Y

t
p (l ti+1 |l<ti+1, ci+1, z )p (l

t
i�1 |l<ti�1, ci�1, z ) (8)
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where the two decoders (for Ti+1 and Ti�1) focus on di�erent POIs
in Ti with distinct context vectors ci±1, iterating through all the
tuples in the dataset during each epoch of the TCL training.
– Decoder 2. Intuitively, the �rst decoder(s) already can be em-
ployed to reconstruct the surrounding trajectories of Ti . However,
the generated trajectories (both previous and next one) su�er the
“myopic” posterior in the sense that the POIs generated previously
at time step t are not informed about the whole future in the se-
quence – recall that at time step t , only the POIs l<t⇤ are used in
Equation (8) without considering possible POIs l>t⇤ thereafter. We
now introduce a re�nement process to CATHI when inferring the
around trajectories.

Speci�cally, we add a second decoder Dec2 upon the �rst decoder
Dec1 to re�ne the �nal trajectory. In contrast to Dec1, Dec2 exploits
the information regarding all the POIs of the generated trajectories
by Dec1 at each time step. In addition to the previous hidden state
and previously generated POIs, Dec2 leverages the context vector
ctti±1, the weighted sum of the hidden states of Dec1, to “polish” the
generated trajectory, i.e., Ti�1 and Ti+1. That is, Dec2 updates the
context vector ctti+1 at time step t as:

ctti+1 =
MX

u=1
�ut sui+1

This is actually another attention vector on the �rst decoder
weighted by a probabilistic distribution

�ut / exp{eui+1W |sti+1} (9)

where eui+1 is the hidden state of Dec2 and sti+1 is the hidden state
of Dec1.

2.2.5 Inference. After describing how to learn the context of tra-
jectories, we now turn our attention from training to trajectory
inference for addressing the two subtasks – trajectory reconstruc-
tion and trajectory prediction. In many seq2seq based tasks such as
neural machine translation [1] and dialogue generation [3], beam
search is the de facto decoding method at test time, due to the
shrunk search space and reduced computational complexity. Beam
search maintains a set of B highest-scoring beams which are pre-
�xes of trajectories. At each time step, every possible POI is added
to every existing beam, yielding a total of B ⇥ D beams where D
is the number of all possible POIs. Then we discard all but the B
most likely beams according to the log-likelihood of the trained
model. This procedure is repeated until a segment ends with the
end-of-trajectory token or reaches the preset maximum length of
trajectories. The segment that ends with end-of-trajectory token
will then be moved to the set of complete hypotheses. Finally, we
choose the one with highest probability from the hypotheses.

3 EVALUATION
We now present the results of our evaluation regarding the per-
formance of TCL solutions with the two context-aware trajectory
inference tasks: trajectory reconstruction and prediction.
Datasets. We conducted our experiments on three datasets shown
in Table 1. The trajectories extracted from Flickr photos and videos
are typically used for trip recommendation [6, 21, 22]. Toronto, Os-
aka, Glasgow and Edinburgh data were built by Lim et al. [22];
Melbourne data were built by [6], and Cali.Adv, Hollywood,

Table 1: Descriptives of datasets.
Dataset #POI #Trajectory #User
Flickr@Edinburgh 29 5,028 1,454
Flickr@Glasgow 29 2,227 601
Flickr@Melbourne 87 5,106 1,000
Flickr@Osaka 29 1,115 450
Flickr@Toronto 30 6,057 1,395
Flickr@Cali.Adv 25 6,907 2,593
Flickr@Hollywood 13 3,858 1,972
Flickr@Epcot 17 5,816 2,725
Flickr@Disneyland 31 11,758 3,704
Flickr@MagicKing 27 8,126 3,342
Foursquare@Tokyo 30 1,1254 400
Geolife 4,796 24,943 179

Epcot, DisneyLand and MagicKing data were built by [21].
Foursquare dataset [34] is often used for POI recommendation and
contains 573,703 check-ins in Tokyo collected for approximately
10 months (from 12 April 2012 to 16 February 2013). We randomly
selected 400 users and their historical trajectories for evaluation.
Geolife dataset [38] was collected in Microsoft Geolife project in
a period of over �ve years (from April 2007 to August 2012). Since
the trajectories in original Geolife dataset contain only GPS points
(longitude and latitude), we cluster all points based on their loca-
tions to obtain 4,796 POIs – that is, we save the two digits after
the decimal point of longitude and latitude. For all the datasets,
we randomly chose 90% trajectories for training and the rest for
testing.

We note that the two tasks evaluated in our experiments are
predicting and reconstructing a sequence, which are more com-
plicated than location prediction and/or recommendation which
requires predicting/recommending a point. Thus, for the two tasks,
the datasets are large enough to evaluate the methods, which
is quite di�erent from the datasets used in venue recommenda-
tion/prediction [9, 26].
Baselines. Since TCL is a novel problem proposed in this work, we
compare our method with several state-of-the-art approaches from
the area of sequential pattern modeling and trajectory recommenda-
tion, with two metrics for measuring accuracy and visiting-order of
POIs in each reconstructed and predicted trajectory. The baselines
consist of:

• Random: A naive approach chooses at random to construct a
trajectory with desired length.
• POIPopu [11]: It selects the most popular and unvisited POI at
each time.
• POIRank [6]: It plans a trajectory by �rst ranking POIs with
rankSVM and then connects them according to ranking scores.
• Markov and MRank [6]: Markov considers the POI-POI tran-
sition probabilities and plans a trajectory by maximizing the
transition likelihood. Markov-Rank learns both POI ranking and
Markov transition.
• MPath and MPRank [6]: MarkovPath (MPath) and
MarkovPath-Rank (MPRank) eliminate sub-tours in Markov
and Markov-Rank by �nding the best path using an integer
programming.
• ST-RNN [23]: is a RNN-based method incorporating spatial and
temporal context for predicting the next location.
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Table 2: Trajectory Reconstruction Performance Among Di�erent Algorithms on Flickr Data.

Edinburgh Glasgow Melbourne Osaka Toronto Cali.Adv. Hollywood Epcot Disneyland MagicKing
F1

Random 0.474 ± 0.071 0.502 ± 0.048 0.442 ± 0.098 0.497 ± 0.051 0.492 ± 0.058 0.458 ± 0.076 0.504 ± 0.043 0.488 ± 0.057 0.438 ± 0.086 0.440 ± 0.080
POIPopu 0.581 ± 0.214 0.589 ± 0.202 0.518 ± 0.174 0.569 ± 0.165 0.534 ± 0.147 0.512 ± 0.159 0.593 ± 0.189 0.618 ± 0.241 0.531 ± 0.187 0.565 ± 0.221
POIRank 0.583 ± 0.213 0.594 ± 0.208 0.531 ± 0.187 0.551 ± 0.170 0.591 ± 0.204 0.517 ± 0.167 0.596 ± 0.198 0.649 ± 0.232 0.537 ± 0.194 0.564 ± 0.220
Markov 0.550 ± 0.188 0.577 ± 0.194 0.455 ± 0.142 0.536 ± 0.173 0.566 ± 0.194 0.509 ± 0.173 0.500 ± 0.174 0.469 ± 0.165 0.500 ± 0.155 0.460 ± 0.150
MPath 0.559 ± 0.170 0.585 ± 0.193 0.486 ± 0.137 0.540 ± 0.197 0.568 ± 0.186 0.486 ± 0.145 0.536 ± 0.157 0.476 ± 0.159 0.496 ± 0.155 0.449 ± 0.130
MRank 0.601 ± 0.225 0.602 ± 0.232 0.490 ± 0.187 0.555 ± 0.201 0.590 ± 0.248 0.517 ± 0.183 0.580 ± 0.193 0.554 ± 0.208 0.512 ± 0.187 0.521 ± 0.194
MPRank 0.578 ± 0.215 0.611 ± 0.231 0.496 ± 0.168 0.574 ± 0.217 0.599 ± 0.236 0.528 ± 0.162 0.573 ± 0.173 0.583 ± 0.200 0.539 ± 0.201 0.543 ± 0.185
ST-RNN 0.665 ± 0.147 0.678 ± 0.171 0.679 ± 0.142 0.703 ± 0.159 0.708 ± 0.123 0.648 ± 0.142 0.645 ± 0.152 0.637 ± 0.168 0.611 ± 0.157 0.627 ± 0.160
DeepMove 0.679 ± 0.153 0.687 ± 0.161 0.688 ± 0.132 0.700 ± 0.152 0.726 ± 0.119 0.645 ± 0.128 0.672 ± 0.102 0.643 ± 0.170 0.618 ± 0.155 0.662 ± 0.158
CARA 0.689 ± 0.155 0.709 ± 0.112 0.669 ± 0.143 0.745 ± 0.144 0.722 ± 0.122 0.688 ± 0.130 0.645 ± 0.126 0.673 ± 0.148 0.631 ± 0.157 0.673 ± 0.150
CATHI 0.778 ± 0.128 0.807 ± 0.121 0.715 ± 0.125 0.913 ± 0.079 0.843 ± 0.115 0.755 ± 0.127 0.796 ± 0.123 0.810 ± 0.136 0.742 ± 0.147 0.731 ± 0.155

pairs-F1
Random 0.102 ± 0.120 0.052 ± 0.144 0.015 ± 0.073 0.074 ± 0.160 0.088 ± 0.123 0.053 ± 0.119 0.095 ± 0.158 0.074 ± 0.143 0.040 ± 0.098 0.054 ± 0.112
POIPopu 0.207 ± 0.366 0.196 ± 0.382 0.117 ± 0.280 0.152 ± 0.316 0.100 ± 0.266 0.113 ± 0.239 0.217 ± 0.333 0.308 ± 0.409 0.150 ± 0.274 0.237 ± 0.354
POIRank 0.212 ± 0.368 0.208 ± 0.389 0.138 ± 0.305 0.130 ± 0.315 0.209 ± 0.380 0.123 ± 0.254 0.225 ± 0.346 0.345 ± 0.415 0.165± 0.292 0.235 ± 0.354
Markov 0.169 ± 0.326 0.180 ± 0.367 0.037 ± 0.169 0.116 ± 0.313 0.172 ± 0.355 0.119 ± 0.280 0.122 ± 0.280 0.153 ± 0.460 0.146 ± 0.493 0.197 ± 0.314
MPath 0.130 ± 0.292 0.177 ± 0.370 0.049 ± 0.202 0.153 ± 0.228 0.155 ± 0.344 0.088 ± 0.283 0.144 ± 0.256 0.167 ± 0.440 0.149 ± 0.485 0.123 ± 0.375
MRank 0.244 ± 0.395 0.265 ± 0.412 0.114 ± 0.273 0.164 ± 0.345 0.263 ± 0.420 0.181 ± 0.284 0.221 ± 0.311 0.213 ± 0.319 0.187 ± 0.306 0.188 ± 0.305
MPRank 0.204 ± 0.369 0.265 ± 0.415 0.080 ± 0.256 0.220 ± 0.379 0.260 ± 0.411 0.192 ± 0.311 0.176 ± 0.265 0.228 ± 0.353 0.196 ± 0.317 0.215 ± 0.332
ST-RNN 0.436 ± 0.172 0.334 ± 0.075 0.355 ± 0.109 0.445 ± 0.188 0.418 ± 0.161 0.314 ± 0.132 0.347 ± 0.116 0.309 ± 0.159 0.351 ± 0.175 0.362 ± 0.196
DeepMove 0.448 ± 0.228 0.445 ± 0.198 0.440 ± 0.194 0.542 ± 0.202 0.582 ± 0.189 0.454 ± 0.223 0.439 ± 0.215 0.402 ± 0.234 0.412 ± 0.222 0.398 ± 0.266
CARA 0.440 ± 0.230 0.403 ± 0.199 0.402 ± 0.188 0.528 ± 0.204 0.574 ± 0.182 0.446 ± 0.210 0.427 ± 0.210 0.404 ± 0.212 0.408 ± 0.206 0.412 ± 0.288
CATHI 0.556 ± 0.210 0.609 ± 0.187 0.474 ± 0.174 0.782 ± 0.201 0.617 ± 0.179 0.517 ± 0.205 0.565 ± 0.207 0.590 ± 0.204 0.493 ± 0.211 0.503 ± 0.240

• DeepMove [9]: a most recent POI prediction method learning
user periodical patterns with attention mechanism and the se-
quential patterns within the recurrent neural networks.
• CARA [26]: a most recent POI recommendation method jointly
learns the user dynamic preference and contextual information
associated with check-ins under the GRU [7] architecture.
Note that the last three methods (ST-RNN, DeepMove and CARA)

are not targeting sequence learning. We extend them to infer a tra-
jectory by predicting (or reconstruct) a sequence of POIs iteratively
– e.g., after predicting POI l i+1⇤ , we incorporate l i+1⇤ into a LSTM
for predicting l i+2⇤ , and so on.
MetricsWe use F1 and pairs-F1 score to evaluate the two subtasks
in TCL following previous works [6, 21].

3.1 Experimental Observations
Overall performance: Table 2 and 3 respectively show the experi-
mental results of trajectory reconstruction and trajectory prediction
on 10 Flickr datasets, while Table 4 shows the results on Geolife
and Foursquare (we exclude others due to the limited space). Note
that the values before and after ‘±’ are respectively the mean and
the standard deviation.

Firstly, CATHI consistently yields the best performance on two
subtasks for both metrics, while exhibiting signi�cant improve-
ment over the baselines. The e�ectiveness of CATHI lies in its
trajectory-level embedding which simultaneously encodes the con-
text information and captures the sequential patterns of trajectories
(at both POI-level and trajectory-level). On the contrary, ST-RNN,
DeepMove and CARA are deep learning based methods learning
mobility at the POI-level and usually exhibit the secondary per-
formance. In addition, one can also observe that CATHI achieves
the lower value of standard deviation than other methods (except
Random which samples around the mean and thus has minimum
value of standard deviation), which means that the results of CATHI
are more stable.

On the other hand, CATHI employs contextual recurrent net-
works as the encoders and decoders and proves their superior per-
formance compared to MC-based models, especially in terms of
trajectory ordering (measured by pairs-F1). Note that the perfor-
mance of MC-based models may even drop to the same level (if not

worse) of random and greedy methods. This is because MC (or its
variants) learns the transition patterns at the POI-level and works
well when predicting the next one or previous one POI. However,
both two subtasks in our work require to form a POI sequence.

Moreover, we observe that the performance of trajectory recon-
struction is slightly better than the trajectory prediction, which is
also true for other baselines. This phenomenon motivates a decom-
position of the subtasks into two steps: (1) reconstruct the trajecto-
ries of individuals, and (2) incorporate the results to improve the
prediction accuracy.
Validity of components: Recall that our CATHI model consists
of several functional parts. In order to investigate the e�ective-
ness of each component, we compare a series of variants of CATHI,
including: (1) CATHI-1, which uses a basic seq2seq model, with con-
textual LSTM for trajectory context learning; (2) CATHI-2, which
incorporates a deterministic attention mechanism into CATHI-1; (3)
CATHI-3, which further incorporates variational encoder-decoder
into CATHI-2; (4) CATHI-4, which considers attention vector as
another variational variable; and (5) the CATHI, which can be con-
sidered as adding the second decoder on CATHI-4. Obviously, these
methods gradually builds up our CATHI method. Thus, we can
understand the rationale behind by scrutinizing the performance
of each module.

Figure 2 plots the performance of the �ve methods on �ve Flickr
datasets. From the trajectory prediction task, we can see that each
component of CATHI contributes to the trajectory context learning.
Among various modules, deterministic attention is the most in�u-
ential one. We also observe that our variational attention works
well across all comparisons which proves that variational encoder-
decoder can be used to enhance seq2seq model, but should consider
the attention vectors as variational variables. Finally, CATHI out-
performing CATHI-4 demonstrates that the second decoder indeed
improve the TCL performance by re�ning the results of using one
decoder, especially for better learning visiting order – it largely
improves the pairs-F1 results.

4 RELATEDWORK
POI-level Models. Modeling the patterns of user check-ins is a
primary step in most application tasks such as POI recommendation
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Table 3: Trajectory Prediction Performance Among Di�erent Algorithms on Flickr Data.

Edinburgh Glasgow Melbourne Osaka Toronto Cali.Adv. Hollywood Epcot Disneyland MagicKing
F1

Random 0.474 ± 0.071 0.503 ± 0.048 0.442 ± 0.098 0.500 ± 0.049 0.492 ± 0.058 0.424 ± 0.091 0.498 ± 0.043 0.438 ± 0.078 0.408 ± 0.099 0.406 ± 0.095
POIPopu 0.515 ± 0.154 0.542 ± 0.166 0.480 ± 0.151 0.587 ± 0.227 0.531 ± 0.167 0.494 ± 0.160 0.543 ± 0.192 0.543 ± 0.186 0.455 ± 0.166 0.465 ± 0.172
POIRank 0.518 ± 0.173 0.565 ± 0.205 0.511 ± 0.186 0.547 ± 0.173 0.568 ± 0.198 0.483 ± 0.156 0.516 ± 0.192 0.510 ± 0.157 0.453 ± 0.162 0.457 ± 0.153
Markov 0.520 ± 0.176 0.551 ± 0.169 0.457 ± 0.142 0.630 ± 0.228 0.557 ± 0.194 0.489 ± 0.172 0.524 ± 0.193 0.541 ± 0.191 0.456 ± 0.131 0.470 ± 0.159
MPath 0.550 ± 0.169 0.563 ± 0.182 0.488 ± 0.130 0.623 ± 0.189 0.575 ± 0.200 0.506 ± 0.169 0.541 ± 0.184 0.540 ± 0.182 0.469 ± 0.128 0.483 ± 0.171
MRank 0.541 ± 0.227 0.637 ± 0.244 0.465 ± 0.207 0.627 ± 0.248 0.612 ± 0.241 0.500 ± 0.195 0.531 ± 0.196 0.563 ± 0.193 0.464 ± 0.171 0.443 ± 0.147
MPRank 0.545 ± 0.248 0.642 ± 0.261 0.464 ± 0.222 0.610 ± 0.252 0.620 ± 0.261 0.492 ± 0.186 0.545 ± 0.170 0.564 ± 0.192 0.465 ± 0.108 0.467 ± 0.134
ST-RNN 0.613 ± 0.115 0.711 ± 0.086 0.669 ± 0.091 0.645 ± 0.140 0.689 ± 0.102 0.624 ± 0.113 0.643 ± 0.081 0.638 ± 0.108 0.642 ± 0.126 0.669 ± 0.121
DeepMove 0.602 ± 0.148 0.732 ± 0.162 0.701 ± 0.156 0.672 ± 0.136 0.712 ± 0.134 0.706 ± 0.149 0.682 ± 0.147 0.652 ± 0.183 0.656 ± 0.166 0.682 ± 0.155
CARA 0.616 ± 0.142 0.726 ± 0.158 0.704 ± 0.166 0.670 ± 0.140 0.704 ± 0.129 0.702 ± 0.146 0.680 ± 0.142 0.655 ± 0.115 0.650 ± 0.161 0.677 ± 0.167
CATHI 0.772 ± 0.123 0.815 ± 0.127 0.722 ± 0.148 0.758 ± 0.091 0.807 ± 0.106 0.737 ± 0.129 0.777 ± 0.139 0.781 ± 0.141 0.737 ± 0.151 0.713 ± 0.152

pairs-F1
Random 0.041 ± 0.114 0.076 ± 0.116 0.012 ± 0.052 0.124 ± 0.136 0.046 ± 0.129 0.046 ± 0.103 0.095 ± 0.144 0.068 ± 0.126 0.042 ± 0.094 0.048 ± 0.100
POIPopu 0.097 ± 0.250 0.116 ± 0.301 0.064 ± 0.215 0.225 ± 0.412 0.109 ± 0.295 0.100 ± 0.232 0.169 ± 0.313 0.156 ± 0.299 0.080 ± 0.215 0.090 ± 0.232
POIRank 0.114 ± 0.283 0.174 ± 0.375 0.120 ± 0.296 0.130 ± 0.315 0.175 ± 0.362 0.091 ± 0.228 0.136 ± 0.298 0.108 ± 0.245 0.076 ± 0.199 0.072 ± 0.196
Markov 0.121 ± 0.287 0.129 ± 0.317 0.039 ± 0.174 0.283 ± 0.234 0.160 ± 0.348 0.108 ± 0.276 0.149 ± 0.302 0.176 ± 0.319 0.088 ± 0.341 0.086 ± 0.243
MPath 0.101 ± 0.285 0.144 ± 0.343 0.041 ± 0.188 0.185 ± 0.367 0.177 ± 0.374 0.105 ± 0.271 0.145 ± 0.297 0.145 ± 0.304 0.091 ± 0.334 0.087 ± 0.252
MRank 0.205 ± 0.348 0.319 ± 0.435 0.113 ± 0.280 0.313 ± 0.443 0.288 ± 0.411 0.123 ± 0.297 0.168 ± 0.322 0.221 ± 0.360 0.116 ± 0.243 0.142 ± 0.375
MPRank 0.229 ± 0.386 0.341 ± 0.460 0.124 ± 0.308 0.297 ± 0.439 0.325 ± 0.449 0.110 ± 0.275 0.166 ± 0.286 0.195 ± 0.327 0.104 ± 0.315 0.156 ± 0.324
ST-RNN 0.301 ± 0.147 0.392 ± 0.113 0.373 ± 0.122 0.305 ± 0.159 0.418 ± 0.172 0.347 ± 0.153 0.391 ± 0.109 0.303 ± 0.120 0.327 ± 0.176 0.328 ± 0.145
DeepMove 0.334 ± 0.152 0.398 ± 0.142 0.392 ± 0.156 0.362 ± 0.162 0.424 ± 0.188 0.352 ± 0.195 0.428 ± 0.198 0.402 ± 0.202 0.420 ± 0.199 0.368 ± 0.198
CARA 0.368± 0.198 0.340 ± 0.209 0.391 ± 0.183 0.394 ± 0.186 0.422 ± 0.119 0.360 ± 0.202 0.422 ± 0.201 0.416 ± 0.220 0.428 ± 0.212 0.385 ± 0.221
CATHI 0.515 ± 0.180 0.523 ± 0.236 0.460 ± 0.205 0.516 ± 0.199 0.559 ± 0.205 0.431 ± 0.195 0.515 ± 0.201 0.533 ± 0.206 0.429 ± 0.209 0.422 ± 0.212

Table 4: F1 and pairs-F1 Comparisons Among Di�erent Algo-
rithms on Geolife and Foursquare data.

Trajectory Reconstruction Trajectory Prediction
Methods F1 Pairs-F1 F1 Pairs-F1

G
eo
lif
e

Random 0.148±0.077 0.048±0.086 0.141±0.067 0.044±0.083
POIPopu 0.190±0.138 0.003±0.026 0.163±0.122 0.114±0.092
POIRank 0.188±0.133 0.002±0.025 0.157±0.124 0.128±0.122
ST-RNN 0.502±0.111 0.158±0.088 0.509±0.107 0.223±0.138
DeepMove 0.490±0.212 0.203±0.223 0.502±0.221 0.228±0.232
CARA 0.502±0.111 0.158±0.088 0.509±0.107 0.223±0.138
CATHI 0.536±0.109 0.318±0.110 0.520±0.102 0.358±0.104

Fo
ur
sq
ua
re

Random 0.508±0.036 0.026±0.107 0.489±0.040 0.028±0.105
POIPopu 0.555±0.158 0.117±0.307 0.532±0.170 0.109±0.305
POIRank 0.583±0.189 0.172±0.365 0.550±0.189 0.142±0.342
Markov 0.533±0.153 0.074±0.247 0.551±0.159 0.111±0.307
MPath 0.527±0.143 0.065±0.236 0.599±0.124 0.147±0.209
ST-RNN 0.609±0.153 0.333±0.210 0.642±0.116 0.342±0.163
DeepMove 0.702±0.167 0.412±0.212 0.678±0.121 0.359±0.192
CARA 0.719±0.169 0.425±0.228 0.684±0.119 0.365±0.166
CATHI 0.809±0.145 0.616±0.190 0.749±0.087 0.473±0.150

and trip planning. The sequential patterns of check-ins are usually
modeled by various machine learning techniques, such as Markov
Chains (MC) [6, 17], matrix/tensor factorization [20], pairwise rank-
ing model [16], Recurrent Neural Networks (RNN) [9, 13, 13, 23, 26]
and distributed representation methods [10, 24, 32, 33, 37] (e.g.
word2vec [27]). Trip planning leverages the spatio-temporal check-
ins for recommending a sequence of POIs (POI-level modeling
paradigm) and a use of MC to model the POI!POI transition by
learning from historical behavior and trajectories have been dis-
cussed in [6, 21]. This line of researches focuses on modeling the
sequential patterns of POIs (combined with various features of POIs
and users) for solving di�erent application tasks. However, they
fail to incorporate the context of trajectories which is the objective
of our work.

(a) F1 . (b) pairs-F1 .

Figure 2: Comparison of modules in CATHI.

Trajectory Pattern Learning. Uncovering semantic patterns
characterizing human trajectory has been studied extensively, and
the results can be categorized into: (1) statistical patterns learn-
ing: measuring and quantifying models such as continuous-time
random-walk [4] and Lévy �ight [15], accounting for character-
istics of individual human trajectories [29]. (2) similarity mining:
measuring the similarity or distance between two trajectories, such
as Dynamic TimeWarping or Edit distance [8] – which may exploit
the uniqueness and regularity of human mobility. (3) periodical pat-
tern mining: �nding (sub-)sequences and periodical motion patterns,
enabling travel recommendation [6, 21], life pattern understand-
ing [23, 30, 36], recovering trajectories associated with users [13, 39]
and next location prediction [9, 14, 23]. The numerous works in se-
mantic trajectory mining have not formally de�ned (and addressed)
the trajectory context learning (TCL), which is part of our study. Our
proposed CATHI is also di�erent from conventional approaches in
that it captures higher level of semantics and provides more compre-
hensive understanding of human mobility by learning long-short
term dependency at the trajectory level.

5 CONCLUSIONS
We introduced a novel problem – Trajectory Context Learning
(TCL) – aiming at mining of high-level human motion patterns. To-
wards its solution, we relied on Trajectory Context Embedding and
proposed CATHI – a method for jointly learning hierarchical and
sequential patterns of trajectories, bene�cial for many downstream
tasks needing inference of human trajectories. As demonstrated,
TCL provides valuable insights and promising guidelines for fur-
ther investigations of intricacies of motion patterns. As part of our
future work we plan to investigate how to leverage it for modeling
the topics of sequential patterns, and its use in a wider range of
applications, such as POI recommendation and road planning.
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