
Identifying Human Mobility via Trajectory Embeddings
Qiang Gao∗, Fan Zhou∗†, Kunpeng Zhang‡, Goce Trajcevski§, Xucheng Luo∗, Fengli Zhang∗

∗University of Electronic Science and Technology of China, Chengdu, China
qianggao@std.uestc.edu.cn, fan.zhou, xucheng, fzhang@uestc.edu.cn

‡University of Maryland, College park
kzhang@rhsmith.umd.edu

§Northwestern University, Evanston,
goce@eecs.northwestern.edu

Abstract
Understanding human trajectory patterns is an im-
portant task in many location based social net-
works (LBSNs) applications, such as personalized
recommendation and preference-based route plan-
ning. Most of the existing methods classify a tra-
jectory (or its segments) based on spatio-temporal
values and activities, into some predefined cate-
gories, e.g., walking or jogging. We tackle a novel
trajectory classification problem: we identify and
link trajectories to users who generate them in the
LBSNs, a problem called Trajectory-User Linking
(TUL). Solving the TUL problem is not a triv-
ial task because: (1) the number of the classes
(i.e., users) is much larger than the number of mo-
tion patterns in the common trajectory classifica-
tion problems; and (2) the location based trajec-
tory data, especially the check-ins, are often ex-
tremely sparse. To address these challenges, a
Recurrent Neural Networks (RNN) based semi-
supervised learning model, called TULER (TUL
via Embedding and RNN) is proposed, which ex-
ploits the spatio-temporal data to capture the un-
derlying semantics of user mobility patterns. Ex-
periments conducted on real-world datasets demon-
strate that TULER achieves better accuracy than the
existing methods.

1 Introduction
Location based social networks (LBSNs), such as Instagram
and Twitter, generate large volumes of data with geo-spatial
tags. This enables an opportunity for better understanding
and using of motion patterns in various applications [Zheng,
2015], such as: recommending POIs [Bhargava et al., 2015]
or next visit-location [Cheng et al., 2013]; latent mobility pat-
terns inference [Alharbi et al., 2016] and influence maximiza-
tion [Li et al., 2016], etc.

Trajectory classification is the very initial step towards un-
derstanding user motion activities. For example, in the task
of trajectory semantic inference, one should first label a se-
quence of spatio-temporal activities produced by a particular

†Corresponding author: Fan Zhou (fan.zhou@uestc.edu.cn)

user as some possible patterns, e.g., still or moving, driving or
walking, etc [Damiani and Güting, 2014]. Traditional trajec-
tory classification studies mainly focus on recognizing the ac-
tivity patterns and transportation modes of users, leveraging
techniques such as Dynamic Bayesian Network (DBN), Hid-
den Markov Model (HMM) and Conditional Random Field
(CRF) to incorporate historical visit locations and sequential
patterns. Some existing literatures try to discover the features
of individuals (or a community) based on the Latent Dirichlet
Allocation (LDA) and Bayesian probabilistic graphical model
for the purpose of personalized recommendations, such as
tour planning [Chen et al., 2016] and POIs recommendation
[Bhargava et al., 2015].

Despite the extensive work on mining user mobility behav-
iors [Dodge et al., 2016; Pelekis and Theodoridis, 2014], lit-
tle attention was paid to the problem of linking trajectories to
users who generate them – which is important in many LBSN
application-scenarios. For example, ride-sharing (bike, car)
apps generate large volumes of trajectories – but the user
identities are removed for the sake of privacy protection.
However, correlating such trajectories with users, is also help-
ful in making better (i.e., more personalized and/or precise)
recommendations. Moreover, it could help in identifying ter-
rorists/criminals from sparse spatio-temporal data (e.g., the
transient phone signals and check-ins).

This is what motivates us to study the Trajectory-User
Linking (TUL) problem – which is a challenging task due to
the facts that: (1) the typical number of mobile users is very
large – far larger than the number of motion patterns used in
the traditional trajectory classification studies; (2) the sparse
trajectory data, e.g., the check-ins, may also involve noise and
outliers that can affect the linking accuracy; (3) TUL problem
differs from the traditional mobility pattern-recognition prob-
lems because it requires extracting and analyzing various fea-
tures from trajectories [Yang et al., 2015], which entails both
the curse of dimensionality, as well as the invasion of user
privacy.

In this paper, we propose a new method, TULER (TUL
via Embeddings and RNN) for identifying and linking a large
number of trajectories to their generating-users. More specif-
ically, check-ins in trajectories are embedded into a low-
dimensional space – similarly to approaches in word embed-
ding, which have been demonstrated as capable of capturing
word semantics in Natural Language Processing (NLP). The

motivation behind the check-in embedding is based on the
observation that the frequency of location check-in follows
a power-law distribution, similarly to the word frequency in
NLP. After encoding trajectories using embedding in a semi-
supervised way, TULER employs a sophisticated decoder
model, i.e., the (stacked) LSTM [Hochreiter and Schmidhu-
ber, 1997] or GRU [Chung et al., 2014], that operates at the
check-ins level to learn the underlying motion patterns of a
particular user. Conditioned on both the latent motion pat-
terns and users, TULER allows the models to simultaneously
capture both intra- and inter-trajectory information – the es-
sential intricate features required to discriminate and classify
trajectories. To scale TULER to handle billions of trajectories
and millions of users in LSBNs, and capitalize on the RNN
inherent properties, instead of using the large input/output
layers in the encoder/decoder to directly predict users, we di-
vide trajectories and learn richer sub-trajectory patterns.

To the best of our knowledge, this is the first work to ad-
dress the TUL problem and propose effective and efficient
methods for solving it via semi-supervised model (TULER),
leveraging both check-in embedding and Recurrent Neural
Networks. In the rest of this paper, Sec. 2 reviews the re-
lated literature, and Sec. 3 gives a formal definition of TUL
and the details of TULER. As presented in Sec. 4, our ex-
tensive experiments conducted on two real-world datasets
show that TULER outperforms several state-of-the-art classi-
fication and trajectory similarity measuring algorithms, e.g.,
SVM, LDA and LCSS, on correlating trajectories to their
users. Sec. 5 summarizes the paper and outlines directions
for future work.

2 Related Work
Traditional trajectory pattern mining studies mainly focus
on four topics: (i) detecting similarity: measuring the sim-
ilarity or distance between two trajectories which is essen-
tial to cluster and query the trajectory data [Zheng, 2015].
Similarity measures often refer to Dynamic Time Warp-
ing, Longest Common Sub-Sequence (LCSS), Edit distance
and Trajectory-Hausdorff Distance [Chen and Ng, 2004;
Ding et al., 2008]. (ii) discovering co-moving patterns: aim-
ing at discovering the latent motion trends and gathering of
crowds [Zheng et al., 2013]. (iii) sequential and periodical
pattern mining: finding (sub-)sequential and periodical mo-
tion patterns [Li et al., 2012] which enables the travel rec-
ommendation [Chen et al., 2016], life pattern understand-
ing [Song et al., 2010], trajectory search [Chen et al., 2010]
and next location prediction [Yang et al., 2016]. Recently,
a probabilistic graphical model based method called HuMoR
is proposed in [Alharbi et al., 2016], to learn the probability
distribution of latent patterns from the trajectory data. De-
spite a large amount of works in semantic trajectory mining
and classification, the TUL problem has never been formally
defined and addressed.

Trajectory classification is one of the central tasks in un-
derstanding mobility patterns. Most existing classification
works focus on labeling trajectories as different motion pat-
terns, such as Driving, Biking, Bus and Walking in transporta-
tion classification [Zheng et al., 2008] and Occupied, Nonoc-

cupied and Parked in taxi status inference [Zhu et al., 2012].
They mainly rely on extraction of spatio-temporal character-
istics of trajectories. In contrast, TUL problem is more com-
plex due to the large number of labels (users) and the inter-
leaving sub-trajectories of different users.

Interest in natural language processing with RNNs has
greatly increased in recent years, especially after introduction
of memory units such as LSTM [Hochreiter and Schmidhu-
ber, 1997] and GRU [Chung et al., 2014]. RNNs have been
successfully applied to solve text classification problems [Lai
et al., 2015; Liu et al., 2016a], where number of classes is
small. Most of them are binary (e.g., IMDB1 dataset) or have
at most 20 classes (e.g., Fudan2 dataset) – which is much less
than the number of classes (users) in the TUL settings. In ad-
dition, in text classification tasks sufficient corpus is usually
available, whereas TUL needs to address the sparsity issues
for trajectory data.

3 Trajectory-User Linking
In this section, we first formally define the TUL problem,
and then proceed with presenting the details of our proposed
method.

Let Tui
= {li1, li2, ..., lin} denote a trajectory generated

by the user ui during a time interval, where lij (j ∈ [1, n]) is
a location point at time tj for the user ui, in a suitable coordi-
nate system (e.g., longitude + latitude, or some (xlij , ylij).
We refer to lij as a check-in in this paper. A trajectory
Tk = {l1, l2, ..., lm} for which we do not know the ID of the
user who generated it, is called unlinked. Suppose we have a
number of unlinked trajectories T = {T1, ..., Tm} produced
by a set of users U = {u1, ..., un} (m� n). The solution of
TUL provides a mapping that will link unlinked trajectories
to the users: T 7→ U .

Given a set of unlinked trajectories, our solution (TULER)
will first divide each trajectory into a set of consecutive sub-
trajectories. We encode each sub-trajectory using trajectory
embedding and we characterize each trajectory via trained
RNN models and finally link them to users. The overview
of TULER is illustrated in Figure 1.

3.1 Trajectory Segmentation
To reduce the computational complexity and capture richer
semantics of moving patterns, we divide the original trajec-
tory Tui

into k consecutive sub-sequences T 1
ui
, ..., T k

ui
. There

exist various trajectory segmentation methods – e.g., based
on semantic meaning and shape of trajectories [Zheng, 2015]
– however, since this is not the core part of this work, in this
paper we adopt the simple method used in [Liu et al., 2016b].

3.2 Check-in Embedding
To mitigate the problem of the curse of dimensionality, we
represent each check-in with a low-dimensional vector vli ∈
Rd instead of using traditional location representation method
such as one-hot. Similar to word embeddings in natural lan-
guage [Mikolov et al., 2013], we obtain the check-in tra-
jectory representations T ∈ R|C|×d (|C| is the number of

1http://ai.stanford.edu/amaas/data/sentiment/
2www.datatang.com/data/44139

Stacked LSTM/GRU

l1 l2 l3 l4 l5

S
o
ftm
a
x

Users

Check-ins Embedding

Unlinked Trajectories Characterization

T1
1

T2
1

T2
2

T3
1

T3
2 T4

1

T4
1

Figure 1: Overview of the TULER approach. TULER first uses trajectories to learn all check-in embeddings (low-dimension
representation) T ∈ R|C|×d. Then combination of linked trajectory-user pairs and check-in embeddings will be used to train
RNN model to characterize trajectories. An user for a given unlinked trajectory can finally be predicted.

check-ins in the dataset, d is the dimensionality in the lower
space) by maximizing the probabilities of locations (check-
ins) given their context in trajectories.

The reason we use check-in embedding is that the fre-
quency of check-in locations in trajectories follows a power-
law distribution, similarly to words in natural language. Fig-
ure 2 illustrates the distribution of check-ins in two real-world
LSBN datasets from [Cho et al., 2011]. Note that check-ins in
all trajectories will be embedded into the latter RNN model,
which addresses the overfitting problem when the amount
of training instances is small – another motivation of using
check-in embedding in our model.

10
0

10
2

10
4

10
0

10
2

10
4

10
6

check−ins count

#
 o

f
c
h

e
c
k

−
in

s

(a) Gowalla

10
0

10
2

10
4

10
0

10
2

10
4

10
6

check−ins count

#
 o

f
c
h

e
c
k

−
in

s

(b) Brightkite

Figure 2: The frequency of check-in occurrence in two real-
world trajectory datasets.

More specifically, the embedding of a location lt is to pre-
dict its probability given its context locations lt−c : lt+c

through maximizing the log-likelihood
∑m

t=1 log p(lt|lt−c :
lt+c), where c is the size of sliding window. The conditional
probability p(lt−c : lt+c|lt) is defined by the softmax func-
tion as

p(lt+j | lt) =
exp{v(lt)

Tv′(lt+j)}∑|C|
l=1 exp{v(lt)Tv′(l)}

where v(l) and v′(l) are, respectively, the input and output
vector representations of check-in l. We now can estimate the

probability of a trajectory T = {l1, l2, ..., lk} by

p(v(l)) =

m∏
i=1

p(v(li)|C(li, l))

where C(li, l) is the context of location li in a trajectory T ,
and probability p(v(li)|C(li, l))) is approximated by predict-
ing v(li) with

p(v(li)|C(li, l))) =
∏

l′∈C(li,l)

p(v(li)|v(l′))

=
∏

l′∈C(li,l)

exp{v(li) · v(l′)}∑
l′′∈C exp{v(l′′)v(l′)}

3.3 Trajectory Characterization
Even if we split the original trajectories into short times-
pan sub-trajectories, there still exist many dense check-ins in
some sub-trajectories. To process these long-term variable-
length location sequences, TULER employs several variants
of well-known RNN models, i.e., LSTM [Hochreiter and
Schmidhuber, 1997] and GRU [Chung et al., 2014], as well
as the stacked and bidirectional RNNs, to control the input
and output of trajectory embeddings. For the sake of simplic-
ity but without loss of generality, we discuss next in brief the
LSTM and GRU model used in TULER.

TULER with LSTM
For the sub-trajectory T = {l1, l2, ..., lk}, let ht−1, ht and
h̃t denote the last, current and candidate embedding state, re-
spectively. The LSTM model used in TULER is implemented
as follows:

it = σ(Wivt(li) + Uiht−1 + Vict−1 + bi) (1)
ft = σ(Wfvt(li) + Ufht−1 + Vfct−1 + bf)

ot = σ(Wovt(li) + Uoht−1 + Voct + bo)

where it, ft, ot and b∗ are respectively the input gate, forget
gate, output gate and bias vector, σ is a logistic sigmoid func-
tion, matrices W , U and V (∈ Rd×d) are the different gate
parameters, vt(li) is the embedding of the check-in location
li. The memory cell ct is updated by partially replacing the
existing memory unit with a new cell ct as

ct = ftct−1 + it tanh(Wcv(li) + Ucht−1 + bc) (2)

The trajectory embedding is then updated by

ht = ot � tanh(ct) (3)

where σ(·) and tanh(·) refer to the sigmoid and hyperbolic
tangent function, and � is the entry-wise product.

TULER with GRU
Similar to LSTM, TULER with GRU models the trajectory
embedding using extra gating units, but without separated
memory cells. Formally, we update the state of ht by a lin-
ear interpolation between the last state ht−1 and the candidate
state h̃t as

ht = (1− gt)ht−1 + gth̃t

where gt is the update gate which decides how much the unit
updates its activation by

gt = σ(Wzvt(li) + Uzht−1)

The candidate state h̃t is computed similarly to traditional
RNN unit

h̃t = tanh(Wvt(li) + U(st � ht−1))

where st is a set of reset gates and is computed similarly to
updating the gate

st = σ(Wsvt(li) + Usht−1)

Variants
Several variants of TULER are stacked LSTM/GRU and
Bidirectional LSTM [Sutskever et al., 2014]. In stacked
LSTM/GRU, the hidden state of a unit in layer n is used as in-
put to the unit in layer n+1 at the same time step. The goal of
multi-RNN stacking is to capture longer check-in dependency
of a trajectory. However, the training time of stacked TULER
increases exponentially with the number of layers. A Bidi-
rectional LSTM can be used by running two LSTMs in paral-
lel: one is on the sequential check-in embedding vectors, and
the other is on the reverse embedding vectors. Apparently,
this may substantially reduce the time required for training
the model compared to the general and stacked LSTM/GRU
based TULER. The performance of using different types of
deep TULER will be investigated and discussed in the exper-
iment section.

3.4 Trajectory-User Linking
To link trajectories to their users, the trajectory representa-
tions l̃ui generated by the TULER are fed into softmax as

l̃ui = softmax(Wuihui + bui)

=
exp{v(li)

Tκi}∑|u|
j=1 exp{v(li)Tκj}

where κ = {W,U, V, b} is the parameter set needs to learn.
Now we learn the parameters κ w.r.t the objective function.

Given a trajectory sequence lu = l1, l2, ..., lm of a user u, we
train the TULER to maximize the log-likelihood with respect
to κ:

u(lu) 7→
∑
lu∈U

log p(u|lu, κ)

where u and U are respectively the ground-truth user of tra-
jectory lu and the training data. At each step, stochastic gra-
dient descent is used to estimate the parameter set κ

κ← κ+ α
∂ log p(u|lu, κ)

∂κ

where α is the learning rate. Finally, we aim at minimizing
following cost function

Φ(lui , l̃ui) = −
|l|∑
i=1

|u|∑
j=1

u log(l̃ji)

where l̃ji is the predicted trajectory embedding vector.

3.5 Optimization
To alleviate the problem of overfitting inherent to embedding
and RNN, we apply a variational inference based dropout
technique [Gal and Ghahramani, 2016] in TULER, which re-
peats the same dropout mask without deteriorating the perfor-
mance.

During the trajectory embedding, we randomly drop some
check-ins, e.g., trajectory sequence l1, l3, l5, l3, l7, ... might
become l1, , l5, , l7, ... or l1, l3, , l3, l7.... That is, at a time step
t, the same check-ins in the training data may be dropped and
the corresponding row in the embedding matrix T ∈ R|C|×d
would be set to zero.

The dropout variant with respected to eq.(1) and eq.(2) of
RNN in TULER here is defined similarly to [Gal and Ghahra-
mani, 2016]itftot

c̃t

 =

 σ
σ
σ

tanh

(WU

V

)
·

(vt(li)� rv
ht−1 � rh
ct−1 � rc

)
+

bibfbo
bc̃

where r∗ are random masks repeated at all time steps.
After two models: embedding and RNN are trained, a

TULER model is constructed. The embedding layer of
TULER encodes the semantics of check-ins and is initialized
with the corresponding trained weights of We. The stacked
or bidirectional layer of RNN and the softmax of the model
are initialized randomly while all parameters are fine-tuned
on the labeled data.

4 Evaluation
We now present our experiments, comparing TULER with
several baseline methods on two public datasets. Source
code, datasets and implementation details are available on-
line at https://github.com/gcooq/TUL.

4.1 Datasets
To show the performance of TULER and the comparison with
some existing methods, we conduct our experiments on two
publicly available LBSN datasets: Gowalla and Brightkite
[Cho et al., 2011]. Both contain check-ins and users of the
corresponding check-in trajectories (social connection links).
We randomly select 201 and 92 users from Gowalla and
Brightkite respectively. For each user, we concatenate all
check-in locations to form a trajectory which will be further
divided into sub-trajectories based on the time interval we de-
fine (i.e., 6 hours). Table 1 depicts the stats of two datasets.

Table 1: Dataset description and statistics. U : the number of
users; S/T : the number of trajectories for training and testing;
C: the number of check-ins; R: average length of trajectories
(before segmentation); tr: the range of the number of check-
ins in sub-trajectories.

Dataset U S/T C R tr

Gowalla 201 17,654/2,063 10,956 219 [1,131]
Brightkite 92 17,934/2,039 2,120 471 [1,184]

4.2 Baselines and Metrics for Comparison
We compare TULER with three state-of-the-art approaches
from the field of trajectory similarity measurement and
trajectory classification. In addition, TULER itself consists
of five variants, i.e., one layer of RNN (TULER-LSTM
and TULER-GRU), stacked RNNs (TULER-LSTM-S and
TULER-GRU-S) and Bidirectional LSTM (Bi-TULER). The
baselines are:

• LCSS: The Longest Common Sub-Sequence method
[Ying et al., 2011] is to match the longest common sub-
sequence between two sequences using dynamic pro-
gramming. LCSS is also a widely used representative
method for measuring the trajectory similarity. We ap-
ply LCSS to our TUL problem by sequentially searching
all trajectories in the training set for any given testing
sub-trajectory to find the corresponding user.

• LDA: LDA-based (Linear Discriminant Analysis) meth-
ods have shown good performance in text classification.
We employ Bag-of-Words (BoW) [Mikolov et al., 2013]
to embed the trajectory into one-hot vectors following
the method for text embedding proposed in [Lai et al.,
2016], and Singular Value Decomposition (SVD) is used
to decompose the within-class scatter matrix – SVD is
especially suitable for the data with a large number of
features such as the trajectory data. Note that other ma-
trix solvers such as least squares and eigenvalue decom-
position are also compared but omitted due to their lower
performance than SVD in our experiments.

• SVM: In SVM implementation, linear kernel is used for
solving TUL problem due to its better performance than
other kernels such as RBF kernel and Gaussian kernel in
our experiments. BoW is used to embed the trajectories.

TUL tries to predict top-k candidate users for each testing
trajectory. In this paper, we use ACC@K and macro-F1 to
measure the performance, which are common metric in infor-
mation retrieval area. Specifically, ACC@K is to evaluate the
trajectory-user linking accuracy as

ACC@K =
correctly identified trajectories @K

trajectories

and macro-F1 is the harmonic mean of the precision and re-
call:

macro-F1 =
2× P ∗ ×R∗

P ∗ +R∗
.

where P ∗ and R∗ are precision and recall averaged across all
classes (users in TUL).

4.3 Empirical Results
Before comparing the performance among various proposed
algorithms and baselines, we pictorially show several tra-
jectories from our dataset and their predicted users using
TULER in Figure 3. In Figure 3(a) and 3(c), TULER suc-
cessfully identified the trajectories produced by user No.119
and No.19 in two datasets, respectively. However, for the
trajectories in Figure 3(b) and 3(d), TULER fails to link
sub-trajectories to their users: user No.79 and No.97 in two
datasets (maked as red ×), mainly because of the extremely
sparse location sequences, e.g., they contain only 1 or 2
check-ins. This is a still an open problem for trajectory-
user linking. That is, how can we identify the sparse check-
in trajectories? A natural solution is to involve more extra
attributes of the trajectories, e.g., timestamps, to reduce the
complexity when searching trajectory users.

Performance Comparison
Table 2 shows commonly used possible parameter values and
the optimal choices tuned for both TULER and baseline ap-
proaches, which are used for the rest unless specified.

Table 2: Parameters used in TULER and baselines.
Parameters We choose Possible Choices
Dimensionality 250 100-300
Hidden size 300 250-1000
Learning rate 0.00095 0.00085-0.1
Dropout rate 0.5 0-1
Stacked TULER 2 ≥ 2
LDA Matrix solver SVD SVD, LSQR, etc
SVM Kernel Linear Linear, RBF, etc

Table 3 and 4 respectively summarize the performance
comparison among various TULER and baselines on two
datasets, where the best method is shown in bold, and the
second best is shown as underlined.

On Gowalla dataset, our model TULER with Bidirectional
LSTM consistently outperforms other methods in terms of ac-
curacy, while the TULER with one layer of LSTM achieves
the best result with respect to the Macro-F1 metric. Specif-
ically, Bi-TULER yields 36.9%, 28.1% and 13.8% improve-
ment compared to LCSS, LDA and SVM on ACC@5 metric.

Similar performance by TULER also holds on the
Brightkite dataset. For example, the best and the second best

(a) Observation on Gowalla. (b) Observation on Gowalla. (c) Observation on Brightkite. (d) Observation on Brightkite.

Figure 3: Examples of using TULER to predict users of trajectories.

Table 3: Performance comparison on the Gowalla dataset.

Method
Metric ACC@1 ACC@5 Macro-F1

LCSS 32.65 46.13 27.02
LDA 37.86 49.28 34.08
SVM 41.25 55.50 34.32
TULER-LSTM 45.03 63.15 35.77
TULER-GRU 41.06 60.37 31.46
TULER-LSTM-S 41.68 57.03 32.43
TULER-GRU-S 40.10 59.08 32.37
Bi-TULER 45.70 65.68 35.56

Table 4: Performance comparison on the Brightkite dataset.

Method
Metric ACC@1 ACC@5 Macro-F1

LCSS 30.12 39.13 23.02
LDA 40.50 53.38 39.38
SVM 42.07 61.46 36.59
TULER-LSTM 45.00 64.64 38.18
TULER-GRU 43.29 62.49 34.86
TULER-LSTM-S 43.19 61.56 38.71
TULER-GRU-S 41.38 60.68 38.71
Bi-TULER 44.91 63.91 38.20

results on the accuracy are achieved by TULER (TULER-
LSTM and Bi-TULER respectively). Although LDA obtains
the highest Macro-F1, TULER based methods achieve com-
parable results.

A counter-intuitive result is that stacked TULERs (such as
stacked LSTM and GRU), primarily seeking to capture char-
acteristics of longer trajectory sequences, fall behind the one
layer TULER, as well as the Bi-TULER, although they all
outperform baselines. One possible reason is that the tra-
jectory segmentation in TULER has truncated the original
long trajectories to short sub-sequences For longer trajecto-
ries, stacked TULER works the best – corresponding results
are omitted for the simplification purpose.

Model Robustness
Some parameters like the number of iterations, learning rate
might have significant impact on the model performance. Fig-
ure 4 shows that the accuracy of TULER is proportional to the

number of iterations. In addition, a small number of learning
rate (e.g., 0.95× 10−3) can obtain a higher classification ac-
curacy.

(a) Gowalla. (b) Brightkite.

Figure 4: Parameter sensitivity of TULER-LSTM.

5 Conclusions

We presented a new way to mine human mobility pattern –
Trajectory-User Linking (TUL), which aims at identifying
users of location-based trajectories (e.g., check-ins). We de-
veloped an RNN based model (coupling the check-ins) called
TULER which, unlike traditional trajectory similarity mea-
surement and classification models, is designed to capture
the dependency of check-ins and to infer the latent patterns of
users. TULER achieves the significant performance improve-
ment, when compared to existing methods. At its current
stage, TULER can be augmented with other social-networks
information and, as part of our future work, we will investi-
gate how to incorporate community moving patterns to fur-
ther improve the performance of TULER.

Acknowledgements

This work was supported by National Natural Science
Foundation of China (Grant No.61602097, No.61672135
and No.61472064), NSF grants III 1213038 and CNS
1646107, ONR grant N00014-14-10215 and HERE grant
30046005, Sichuan Science-Technology Support Plan Pro-
gram (No.2016GZ0065), and the Fundamental Research
Funds for the Central Universities (No.ZYGX2015J072).

References
[Alharbi et al., 2016] Basma Alharbi, Abdulhakim Qahtan,

and Xiangliang Zhang. Minimizing user involvement for
learning human mobility patterns from location traces. In
AAAI, 2016.

[Bhargava et al., 2015] Preeti Bhargava, Thomas Phan, Ji-
ayu Zhou, and Juhan Lee. Who, what, when, and where:
Multi-dimensional collaborative recommendations using
tensor factorization on sparse user-generated data. In ACM
WWW, 2015.

[Chen and Ng, 2004] Lei Chen and Raymond Ng. On the
marriage of lp-norms and edit distance. In VLDB, 2004.

[Chen et al., 2010] Zaiben Chen, Heng Tao Shen, Xiaofang
Zhou, Yu Zheng, and Xing Xie. Searching trajectories by
locations: An efficiency study. In ACM SIGMOD, 2010.

[Chen et al., 2016] Dawei Chen, Cheng Soon Ong, and Lex-
ing Xie. Learning points and routes to recommend trajec-
tories. In ACM CIKM, 2016.

[Cheng et al., 2013] Chen Cheng, Haiqin Yang, Michael R.
Lyu, and Irwin King. Where you like to go next: succes-
sive point-of-interest recommendation. In IJCAI, 2013.

[Cho et al., 2011] Eunjoon Cho, Seth A. Myers, and Jure
Leskovec. Friendship and mobility: User movement in
location-based social networks. In ACM SIGKDD, 2011.

[Chung et al., 2014] Junyoung Chung, Caglar Gulcehre,
Kyung Hyun Cho, and Yoshua Bengio. Empirical evalua-
tion of gated recurrent neural networks on sequence mod-
eling. Eprint Arxiv, 2014.

[Damiani and Güting, 2014] Maria Luisa Damiani and
Ralf Hartmut Güting. Semantic trajectories and beyond
(tutorial). In IEEE 15th International Conference on Mo-
bile Data Management, MDM 2014, Brisbane, Australia,
July 14-18, 2014 - Volume 2, pages 1–3, 2014.

[Ding et al., 2008] Hui Ding, Goce Trajcevski, Peter
Scheuermann, Xiaoyue Wang, and Eamonn J. Keogh.
Querying and mining of time series data: experimental
comparison of representations and distance measures.
PVLDB, 1(2), 2008.

[Dodge et al., 2016] Somayeh Dodge, Robert Weibel,
Sean Charles Ahearn, Maike Buchin, and Jennifer A.
Miller. Analysis of movement data. International Journal
of Geographical Information Science, 30(5):825–834,
2016.

[Gal and Ghahramani, 2016] Yarin Gal and Zoubin Ghahra-
mani. A theoretically grounded application of dropout in
recurrent neural networks. In NIPS, 2016.

[Hochreiter and Schmidhuber, 1997] Sepp Hochreiter and
Jrgen Schmidhuber. Long short-term memory. Neural
Computation, 9(8):1735–1780, 1997.

[Lai et al., 2015] Siwei Lai, Liheng Xu, Kang Liu, and Jun
Zhao. Recurrent convolutional neural networks for text
classification. In AAAI, 2015.

[Lai et al., 2016] S. Lai, K. Liu, S. He, and J. Zhao. How to
generate a good word embedding. IEEE Intelligent Sys-
tems, 31(6):5–14, 2016.

[Li et al., 2012] Zhenhui Li, Jingjing Wang, and Jiawei Han.
Mining event periodicity from incomplete observations. In
ACM SIGKDD, 2012.

[Li et al., 2016] Ji Li, Zhipeng Cai, Mingyuan Yan, and
Yingshu Li. Using crowdsourced data in location-based
social networks to explore influence maximization. In
IEEE INFOCOM, 2016.

[Liu et al., 2016a] Pengfei Liu, Xipeng Qiu, and Xuanjing
Huang. Recurrent neural network for text classification
with multi-task learning. In IJCAI, 2016.

[Liu et al., 2016b] Qiang Liu, Shu Wu, Liang Wang, and
Tieniu Tan. Predicting the next location: a recurrent model
with spatial and temporal contexts. In AAAI, 2016.

[Mikolov et al., 2013] Tomas Mikolov, Kai Chen, Greg Cor-
rado, and Jeffrey Dean. Efficient estimation of word rep-
resentations in vector space. Computer Science, 2013.

[Pelekis and Theodoridis, 2014] Nikos Pelekis and Yannis
Theodoridis. Mobility Data Management and Exploration.
Springer, 2014.

[Song et al., 2010] C. Song, Z. Qu, N Blumm, and A. L.
Barabsi. Limits of predictability in human mobility. Sci-
ence, 327(5968):1018–1021, 2010.

[Sutskever et al., 2014] Ilya Sutskever, Oriol Vinyals, and
Quoc V. Le. Sequence to sequence learning with neural
networks. In NIPS, 2014.

[Yang et al., 2015] D. Yang, D. Zhang, V. W. Zheng, and
Z. Yu. Modeling user activity preference by leverag-
ing user spatial temporal characteristics in lbsns. IEEE
Transactions on Systems, Man, and Cybernetics: Systems,
45(1):129–142, 2015.

[Yang et al., 2016] Cheng Yang, Maosong Sun, Wayne Xin
Zhao, Zhiyuan Liu, and Edward Y Chang. A neural net-
work approach to joint modeling social networks and mo-
bile trajectories. arXiv preprint arXiv:1606.08154, 2016.

[Ying et al., 2011] Jia Ching Ying, Wang Chien Lee,
Tz Chiao Weng, and Vincent S. Tseng. Semantic trajec-
tory mining for location prediction. In ACM Sigspatial,
2011.

[Zheng et al., 2008] Yu Zheng, Quannan Li, Yukun Chen,
Xing Xie, and Wei Ying Ma. Understanding mobility
based on gps data. In ACM UbiComp, 2008.

[Zheng et al., 2013] Yu Zheng, Nicholas Jing Yuan, Kai
Zheng, and Shuo Shang. On discovery of gathering pat-
terns from trajectories. IEEE Transactions on Knowledge
& Data Engineering, 26(8):242–253, 2013.

[Zheng, 2015] Yu Zheng. Trajectory data mining: An
overview. Acm Transactions on Intelligent Systems &
Technology, 6(3):1–41, 2015.

[Zhu et al., 2012] Yin Zhu, Yu Zheng, Liuhang Zhang, Dar-
shan Santani, Xing Xie, and Qiang Yang. Inferring taxi
status using gps trajectories. Computer Science, 2012.

