
E-Companion for Identifying Influential Users by Topic in Unstructured
User-generated Content

EC.1 Model Inference Procedure

According to the model specification in Section 3, the joint likelihood of our proposed model becomes:

p(w, z,η,φ,α,β, γ,δ)

=
U

∏
u=1

T

∏
t=1

{
Nut

∏
i=1

p(wuti | zuti,φ)p(zuti | ηut)

}
K

∏
k=1

p(ηutk | η·t−1k,αk,βu·k, γtk,δuk)×

p(φ,η·0,α,β, γ,δ) (EC.1)

where p(φ,η·0,α,β, γ,δ) represents the joint prior distribution of the model unknowns, which will be spec-

ified in Section EC.2.

We now derive the procedure for model inference. Our approach utilizes the Markov Chain Monte Carlo

(MCMC) method to generate samples from the posterior distributions for a predetermined number of K

topics. A notable challenge in this process is the lack of a closed-form expression for the posterior distri-

bution, primarily due to the logistic normal prior, as defined in Equation 2. To overcome this, we employ

the technique proposed by Polson et al. (2013), which represents the categorical likelihood as a mixture of

Gaussians with respect to a Pólya-Gamma distribution. As a result, the likelihood of the topic distribution

for corresponding topic assignments is defined as follows:

p(zut | ηut) ∝

(
exp(ηut1)

∑k′ exp(ηutk′)

)Nut1

· · ·
(

exp(ηutK)

∑k′ exp(ηutk′)

)NutK

∝ exp
(

κutkψutk −
ζutk

2
ψ

2
utk

)
, (EC.2)

where ψutk = ηutk − log ∑
k′ ̸=K

exp(ηutk′),κutk = Nutk −
Nut

2
, and Nutk is the number of elements assigned to

topic k in the content generated by user u at time t. ζutk is an auxiliary variable following the Pólya-Gamma

distribution ζutk ∼ PG(Nut ,0). As a result, we can derive the posterior distribution in a closed form.

To make inference on the dynamic processes that govern the topic distribution, we apply the forward

filtering and backward sampling algorithm (Cater and Kohn 1994). Thus, we can rewrite the model repre-

sentation of the hierarchical regression structure of the topic distribution in Equation 3 for derivation of the

posterior distribution. Let ηtk = (η1tk, . . . ,ηUtk)
⊤ be a stacked form of ηutk over all users.

ηtk ∼ N(Bkηt−1k +Ctk, I), (EC.3)

where [Bk]uu′ =


αk if u = u′

βuu′k if u ̸= u′,u′ ∈ Fu

0 otherwise
, Ctk = γtk +

δ1k
...

δUk
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A coefficient matrix Bk is a U ×U square matrix that can be interpreted as a social network weighted by

autoregressive coefficients for self-loops (diagonal) and social influences on network edges (non-diagonal).

This reformulation allows us to derive the filtering distribution and the smoothing distribution as follows.

p(ηtk | z1:t , · · · ) ∝ N(µtk,Σtk) (EC.4)

Σtk =
(
S−1

tk + diag(ζtk)
)−1

, Stk = I +BkΣt−1kB⊤
k

µtk = Σtk

(
κtk + ζtk · log ∑

k′ ̸=k

exp(ηtk′)+ S−1
tk (Bkµt−1k +Ctk)

)
p(ηtk | z1:T , · · · ) ∝ N(µ̃tk, Σ̃tk) (EC.5)

µ̃tk = µtk +Gtk (µ̃t+1k −Bkµtk −Ct+1k) , Gtk = ΣtkB⊤
k

(
I +BkΣtkB⊤

k

)−1

Σ̃tk = S̃tk +GtkΣ̃t+1kG⊤
tk, S̃tk = Σtk −Gtk(I +BkΣtkB⊤

k )Gtk

More details of this derivation and posterior distributions of the remaining parameters are in EC.2. Further-

more, we conduct numerical experiments on synthetic data to validate the inference procedure regarding

the performance of recovering model parameters. These results are presented in EC.3.

EC.2 Details of the Posterior Distributions

In this appendix, we show the detailed derivation process of the filtering distribution and smoothing distribu-

tion (the derivation is based on Sarkka 2013), which were omitted in the text. As described in Section EC.1,

we adopt the forward filtering and backward sampling algorithm to sample from the posterior distribution

of the topic distribution. Note that in the following, we omit the notation of parameters without our focus in

this section for simplicity. First, let the filtering distribution at time t−1 be p(ηt−1k | z1:t−1) = N(µt−1k,Σt−1k),

and then the joint distribution of ηt−1k and ηtk given data up to t − 1 is defined as follows.

p(ηt−1k,ηtk | z1:t−1) = p(ηtk | ηt−1k)p(ηt−1k | z1:t−1)

= N(ηtk; Bkηt−1k +Ctk, I)N(ηt−1k; µt−1k,Σt−1k)

= N(m1,S1), (EC.6)

where m1 =
( µt−1k

Bkµt−1k +Ctk

)
, S1 =

(
Σt−1k Σt−1kB⊤

k
BkΣt−1k I +BkΣt−1kB⊤

k

)
The last line is obtained by using Lemma A.1 of Sarkka (2013). By marginalizing the joint distribution with

respect to ηt−1k, we obtain the following conditional distribution.

p(ηtk | z1:t−1) = N(m2,S2) (EC.7)

where m2 = Bkµt−1k +Ctk, S2 = I +BkΣt−1kB⊤
k
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The likelihood of ηtk with respect to zt can be obtained by using (EC.2).

p(zt | ηtk) ∝ exp
(

ψ
⊤
tkκtk −

1
2

ψ
⊤
tkdiag(ζtk)ψtk

)
(EC.8)

where ψtk = {ψ1tk, . . . ,ψUtk}⊤ = ηtk − log ∑
k′ ̸=k

exp(ηtk′)

κtk = {κ1tk, . . . ,κUtk}⊤, ζtk = {ζ1tk, . . . ,ζUtk}⊤

Therefore, the posterior distribution of ηtk when observing the data up to t (i.e., filtering distribution) is

given as follows.

p(ηtk | zt , z1:t−1) ∝ p(zt | ηtk)p(ηtk | z1:t−1)

∝ exp
(

ψ
⊤
tkκtk −

1
2

ψ
⊤
tkdiag(ζtk)ψtk

)
N(m2,Ss)

= N(µtk,Σtk) (EC.9)

where Σtk =
(
S−1

2 + diag(ζtk)
)−1

,

µtk = Σtk

(
κtk + ζtk · log ∑

k′ ̸=k

exp(ηtk′)+ S−1
2 m2

)
Next, as with the above, the joint distribution of ηtk and ηt+1k given z1:t is as follows.

p(ηtk,ηt+1k | z1:t) = N(m̃1, S̃1) (EC.10)

where m̃1 =
( µtk

Bkµtk +Ct+1k

)
, S̃1 =

(
Σtk ΣtkB⊤

k
BkΣtk I +BkΣtkB⊤

k

)
Since the joint distribution is Gaussian, the conditional distribution is easily obtained as follows.

p(ηtk | ηt+1k, z1:t) = N(m̃2, S̃2) (EC.11)

where m̃2 = µtk +Gtk(ηt+1k −Bkµtk −Ct+1k)

Gtk = BkΣtk(I +BkΣtkB⊤
k )

−1

S̃2 = Σtk −Gtk(I +BkΣtkB⊤
k )G

⊤
tk

Let the smoothing distribution at t + 1 be p(ηt+1k | z1:t) = N(µ̃t+1k, Σ̃t+1k), and since p(ηtk | ηt+1k, z1:T ) =

p(ηtk | ηt+1k, z1:t) from the model specification, we can obtain the joint distribution when observing the

whole data as follows.

p(ηtk,ηt+1k | z1:T ) = p(ηtk | ηt+1k, z1:t)p(ηt+1k | z1:T )

= N(m̃2, S̃2)N(µ̃t+1k, Σ̃t+1k)

= N(m̃3, S̃3) (EC.12)

where m̃3 =
( µ̃t+1k

µtk +Gtk(µ̃t+1k −Bkµtk −Ct+1k)

)
S̃2 =

(
Σ̃t+1k Σ̃t+1kG⊤

tk
GtkΣ̃t+1k S̃2 +GtkΣ̃t+1kG⊤

tk

)
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Therefore, we can obtain the posterior distribution of ηtk when observing the whole data (i.e., smoothing

distribution) by marginalizing the joint distribution with respect to ηt+1k.

p(ηtk | z1:T ) = N(µ̃tk, Σ̃tk) (EC.13)

where µ̃tk = µtk +Gtk(µ̃t+1k −Bkµtk −Ct+1k), Σ̃tk = S̃2 +GtkΣ̃t+1kG⊤
tk

In the MCMC iteration, we calculate the filtering distribution forwards, and then let us regard µ̃T k =

µT k, Σ̃T k = ΣT k to sample from the smoothing distribution backwards.

If ηut and zut are given, ζutk can be also sampled from the following Pólya-Gamma distribution (Polson

et al. 2013).

p(ζutk | ηut , zut) ∝ PG

(
Nut ,ηutk − log ∑

k′ ̸=k

exp(ηutk′)

)
(EC.14)

Since we can easily derive the posterior distributions of the remaining parameters as with the conventional

Bayesian estimation of the normal linear regression model (Rossi et al. 2005) and topic models (Griffiths

and Steyvers 2004), only the obtained distributions are displayed in the following.

p(zuti = k | · · · ) ∝ exp(ηutk)×
Nkv\uti + φ0

Nk\uti + φ0 ·V
, where φk ∼ Dirichlet(φ0) (EC.15)

p(αk | · · · ) ∝ N(µ,σ2), where σ
2 =

( U

∑
u=1

T

∑
t=1

η
2
ut−1k +

1
σ2

α0

)−1

(EC.16)

µ = σ
2

(
U

∑
u=1

T

∑
t=1

ηut−1k

(
ηutk − ∑

f∈Fu

βu f k ·η f t−1k − γtk − δuk

))

p(βu f k | πu f k = 1, . . .) ∝ N(µ,σ2), where σ
2 =

(
T

∑
t=1

η
2
f t−1k +

1
σ2

β

)−1

(EC.17)

µ = σ
2

(
T

∑
t=1

η f t−1k

(
ηutk −αk ·ηut−1k − ∑

f ′∈Fu

βu f ′k ·η f ′t−1k − γtk − δuk

)
+

x⊤u f ρk

σ2
β

)

p(βu f k | πu f k = 0, . . .) ∝ N(µ,σ2), where σ
2 =

(
T

∑
t=1

η
2
f t−1k +

1
σ2

β
·ωu f k

)−1

(EC.18)

µ = σ
2

(
T

∑
t=1

η f t−1k

(
ηutk −αk ·ηut−1k − ∑

f ′∈Fu

βu f ′k ·η f ′t−1k − γtk − δuk

))

p(γtk | · · · ) ∝ N(µ,σ2), where σ
2 =

(
U +

1
σ2

γ0

)−1

(EC.19)

µ = σ
2

(
U

∑
u=1

ηutk −αk ·ηut−1k − ∑
f∈Fu

βu f k ·η f t−1k − δuk

)

p(δuk | · · · ) ∝ N(µ,σ2), where σ
2 =

(
T +

1
σ2

δ0

)−1

(EC.20)

µ = σ
2

(
T

∑
t=1

ηutk −αk ·ηut−1k − ∑
f∈Fu

βu f k ·η f t−1k − γtk

)
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EC.3 Performance of Parameter Recovery

In this section, we conduct parameter recovery experiments using synthetic data to validate the perfor-

mance of the proposed model and the estimation procedure. As introduced in Section 3, since the proposed

model defines social influence as the lagged correlation between users’ latent topic distributions, we should

demonstrate the reliability of the estimated social influence on imaginary variables through a numerical

experiment.

To evaluate the performance of parameter recovery, now we suppose several scenarios. The number of

users (U) and the number of times (T ) are set to be 100 or 200, and the number of topics (K) is set to be

5, 10, or 20. Another scenario is the sparsity proportion of social influence, specifically, in the case of s%

sparsity, only randomly chosen s% of all edges in the generated network are given non-zero value of β,

while the remaining 1 − s% of edges do not have any influence. Following the setting of each scenario,

a random network and the values of parameters in Equation 3 are initialized, and then the topic distribu-

tion is set according to the hierarchical structure. The element distribution is also randomly set with φk ∼

Dirichlet(φ0k), φ0k = {φ0k1, . . . ,φ0kV}⊤, where φ0kv corresponding 50 unique objects for each topic is ten

times the others, specifically, in the case of k = 1, φ0k1 = φ0k50 = 10, while φ0k51 = φ0kV = 1. Thus, the size

of vocabulary is V = 50×K. Given the generated topic distribution and element distribution, the data w is

generated according to the generative process in Section 3. Using the generated data, the model is estimated

by MCMC described in the previous section.

Figure EC.1 and EC.2 show the values of root mean square error (RMSE) and correlation coefficient

between the true values and the estimated values for each scenario and parameter. Although the parameters

of the hierarchical regression model in Equation 3 are not recovered well, the topic distribution and the

element distribution, which are the parameters of interest, are correctly estimated with about 0.8 of the

correlation coefficient in most scenarios. For each scenario, the accuracy of the estimation tends to be

worse as the number of data (U,T ) and the number of topics (K), that is, the number of parameters to be

estimated, increase. Since the parameters of interest in this study are topic distribution, element distribution,

and social influence as can be seen from the discussion in Section 4.3, improving the estimation accuracy

of the remaining parameters (α, γ,δ) is out of scope.

Next, to validate the prior distribution for social influence in the proposed model, several models with

different prior settings are estimated for each scenario. In the field of Bayesian statistics, in addition to the

Bayesian lasso prior assumed in the proposed model, the horseshoe prior (Carvalho et al. 2010) and the

Dirichlet-Laplace prior (Bhattacharya et al. 2015) have been used as shrinkage priors. The definitions of the

horseshoe prior and the Dirichlet-Laplace prior are

βu f k | ωu f k, τk ∼ N(0,ω2
u f k · τ

2
k), ω

2
u f k ∼C+(0,1), τ

2
k ∼C+(0,1) (EC.21)
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Figure EC.1 RMSE

and

βu f k | ξu f k,ωu f k, τk ∼ N(0,ξu f k ·ω
2
u f k · τ

2
k) (EC.22)

ξu f k ∼ Exp
(

1
2

)
, ωk ∼ Dirichlet

(
1

∑
U
u=1 |Fu|

)
, τk ∼ Gamma

(
1,

1
2

)
,

respectively. In this simulation, we compare the performance of the Bayesian lasso prior with three different

prior distributions, including these plus weakly informative prior (βu f k ∼ N(0,102)), which does not assume

sparsity. Figure EC.3 shows the values of RMSE between true and estimates. All models can accurately

recover the true values, among which Bayesian lasso is superior to others in most of the scenarios. Moreover,

even when the scale of the model (U,T,K) is increased, the RMSEs of social influence do not get so worse as

the other parameters. Figure EC.4 shows the F-measure which is calculated by regarding users as influential

when the estimated β is 0.5 or higher in absolute value. The F-measures are high in all scenarios, among

which Bayesian lasso outperforms the others, and it indicates that the proposed model can provide reliable

estimates of social influences among users.

EC.4 Simulation Experiments for Large Network Data

In this section, we discuss the computational cost of applying the proposed model to larger-scale networks,

rather than the medium-scale network dataset used in the empirical analysis. Figure EC.5 illustrates the

computation time required per iteration for estimating the proposed model as the number of users. As
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shown, the computation time increases exponentially with the number of users. This exponential growth

is likely due to the bottleneck caused by the matrix multiplication and inversion in Equation EC.10 and

EC.14, which could pose a significant challenge when applying the proposed model to large-scale networks.

Although this study has not identified a solution to this high computational cost, recent advancements in

machine learning, particularly in low-rank matrix approximations, offer promising avenues for reducing

computational demands. By leveraging these techniques, it may be possible to estimate user-specific topic

distributions with realistic computational costs by approximating the large-scale social influence network,

while still accurately estimating the social influence between user pairs. While addressing this challenge

is beyond the scope of the current study and remains a topic for future research, it is an essential issue

given the high demand in practice for effectively designing SMCs within large-scale networks involving

thousands or even millions of users.

EC.5 Summary of Literature Review

Discussion in Section 2.1 is summarized into Table EC.1.
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