E-Companion for Identifying Influential Users by Topic in Unstructured
User-generated Content

EC.1 Model Inference Procedure

According to the model specification in Section 3, the joint likelihood of our proposed model becomes:
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where p(¢,1.0,0, B,7v,d) represents the joint prior distribution of the model unknowns, which will be spec-
ified in Section EC.2.

We now derive the procedure for model inference. Our approach utilizes the Markov Chain Monte Carlo
(MCMC) method to generate samples from the posterior distributions for a predetermined number of K
topics. A notable challenge in this process is the lack of a closed-form expression for the posterior distri-
bution, primarily due to the logistic normal prior, as defined in Equation 2. To overcome this, we employ
the technique proposed by Polson et al. (2013), which represents the categorical likelihood as a mixture of
Gaussians with respect to a Pélya-Gamma distribution. As a result, the likelihood of the topic distribution

for corresponding topic assignments is defined as follows:

p(mlm)«(“l’(“m))N“”...( exp(n,,,K)) >Nu,,<
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Nlll . .
where Y, = Nux — log Z exp(Mu ) s Kk = Nk — - and N, is the number of elements assigned to

K#K
topic k in the content generated by user u at time 7. ,; is an auxiliary variable following the P6lya-Gamma

distribution {4 ~ PG(N,,0). As a result, we can derive the posterior distribution in a closed form.
To make inference on the dynamic processes that govern the topic distribution, we apply the forward
filtering and backward sampling algorithm (Cater and Kohn 1994). Thus, we can rewrite the model repre-

sentation of the hierarchical regression structure of the topic distribution in Equation 3 for derivation of the

posterior distribution. Let Mz = (M, - - -, Nuw) - be a stacked form of 1, over all users.
N ~ N(BM;—1x + Ci, 1), (EC.3)
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A coefficient matrix By is a U x U square matrix that can be interpreted as a social network weighted by
autoregressive coefficients for self-loops (diagonal) and social influences on network edges (non-diagonal).

This reformulation allows us to derive the filtering distribution and the smoothing distribution as follows.

p(nzk ‘ L1yt ) o< N(/tha Ztk) (EC.4)
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More details of this derivation and posterior distributions of the remaining parameters are in EC.2. Further-
more, we conduct numerical experiments on synthetic data to validate the inference procedure regarding

the performance of recovering model parameters. These results are presented in EC.3.

EC.2 Details of the Posterior Distributions

In this appendix, we show the detailed derivation process of the filtering distribution and smoothing distribu-
tion (the derivation is based on Sarkka 2013), which were omitted in the text. As described in Section EC.1,
we adopt the forward filtering and backward sampling algorithm to sample from the posterior distribution
of the topic distribution. Note that in the following, we omit the notation of parameters without our focus in
this section for simplicity. First, let the filtering distribution at time  — 1 be p(M,_1x | Z11-1) = N(th—11, Zr—11)

and then the joint distribution of M,_;; and 1, given data up to ¢ — 1 is defined as follows.

p(ntflkantk ‘ Zl:t—l) = P(T]zk |T]171k)p(ﬂt71k |Zl:t71)
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The last line is obtained by using Lemma A.1 of Sarkka (2013). By marginalizing the joint distribution with

respect to 1;_;, we obtain the following conditional distribution.

P(Muk | 21—1) = N(my, S3) (EC.7)

where my = By 1; + Cy, S, =1+ BX, B,
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The likelihood of n,, with respect to z, can be obtained by using (EC.2).

1 .
P(z [ Muk) o< exp (w,lm - 2w£dzag(cfk)wtk> (EC.8)
where Wy = {Wiu, - -, Wun} ' =Nu — log Z exp(Mw)
KAk

Ktk:{Kltka---aKUzk}T7 Czk:{CIZkv---vt_,Utk}T

Therefore, the posterior distribution of 1, when observing the data up to ¢ (i.e., filtering distribution) is

given as follows.
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Next, as with the above, the joint distribution of 1, and 1,1, given z,, is as follows.

PMues Neir | 214) = N (7, 1) (EC.10)
P Hik ¢ _ ( Eu szBkT
Where m; = <Bk,utk +Ct+lk> ’ Sl - <Bk2tk I+BkZ,kBl;r

Since the joint distribution is Gaussian, the conditional distribution is easily obtained as follows.

PMuk | M1, 210) = N (11, S5) (EC.11)
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Let the smoothing distribution at # + 1 be p(N,o i | 212) = N(fys 14, Zrs1)» and since p(Mu | Nesri, 21:7) =
P(Mu | Nev1xs 21) from the model specification, we can obtain the joint distribution when observing the

whole data as follows.
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Therefore, we can obtain the posterior distribution of 1, when observing the whole data (i.e., smoothing

distribution) by marginalizing the joint distribution with respect to 1, .

P | z1:r) = N (fige, Eie) (EC.13)

where fiy = i + Gu (e — Btk — Criiie) s Li=5+ sziHlkG,Tk

In the MCMC iteration, we calculate the filtering distribution forwards, and then let us regard fi;, =
Uri, Y =X to sample from the smoothing distribution backwards.

If n,, and z,, are given, {,, can be also sampled from the following P6lya-Gamma distribution (Polson
et al. 2013).

P(Cutk | nutaZut) PG ( uhnutk log Z eXP nmk’)) (EC14)

Kk
Since we can easily derive the posterior distributions of the remaining parameters as with the conventional
Bayesian estimation of the normal linear regression model (Rossi et al. 2005) and topic models (Griffiths

and Steyvers 2004), only the obtained distributions are displayed in the following.
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EC.3 Performance of Parameter Recovery

In this section, we conduct parameter recovery experiments using synthetic data to validate the perfor-
mance of the proposed model and the estimation procedure. As introduced in Section 3, since the proposed
model defines social influence as the lagged correlation between users’ latent topic distributions, we should
demonstrate the reliability of the estimated social influence on imaginary variables through a numerical
experiment.

To evaluate the performance of parameter recovery, now we suppose several scenarios. The number of
users (U) and the number of times (7') are set to be 100 or 200, and the number of topics (K) is set to be
5, 10, or 20. Another scenario is the sparsity proportion of social influence, specifically, in the case of s%
sparsity, only randomly chosen s% of all edges in the generated network are given non-zero value of J3,
while the remaining 1 — 5% of edges do not have any influence. Following the setting of each scenario,
a random network and the values of parameters in Equation 3 are initialized, and then the topic distribu-
tion is set according to the hierarchical structure. The element distribution is also randomly set with ¢, ~
Dirichlet(Oo), 0o = {Gox1,--->Porv } > Where g, corresponding 50 unique objects for each topic is ten
times the others, specifically, in the case of k =1, Oor; = Oorso = 10, while dgis; = dory = 1. Thus, the size
of vocabulary is V = 50 x K. Given the generated topic distribution and element distribution, the data w is
generated according to the generative process in Section 3. Using the generated data, the model is estimated
by MCMC described in the previous section.

Figure EC.1 and EC.2 show the values of root mean square error (RMSE) and correlation coefficient
between the true values and the estimated values for each scenario and parameter. Although the parameters
of the hierarchical regression model in Equation 3 are not recovered well, the topic distribution and the
element distribution, which are the parameters of interest, are correctly estimated with about 0.8 of the
correlation coefficient in most scenarios. For each scenario, the accuracy of the estimation tends to be
worse as the number of data (U, T) and the number of topics (K), that is, the number of parameters to be
estimated, increase. Since the parameters of interest in this study are topic distribution, element distribution,
and social influence as can be seen from the discussion in Section 4.3, improving the estimation accuracy
of the remaining parameters (a., ¥, 8) is out of scope.

Next, to validate the prior distribution for social influence in the proposed model, several models with
different prior settings are estimated for each scenario. In the field of Bayesian statistics, in addition to the
Bayesian lasso prior assumed in the proposed model, the horseshoe prior (Carvalho et al. 2010) and the
Dirichlet-Laplace prior (Bhattacharya et al. 2015) have been used as shrinkage priors. The definitions of the

horseshoe prior and the Dirichlet-Laplace prior are

Busk | @1, T ~ N(O, cogfk 1), mﬁfk ~C™(0,1), T ~C(0,1) (EC.21)
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respectively. In this simulation, we compare the performance of the Bayesian lasso prior with three different
prior distributions, including these plus weakly informative prior (B, s ~ N(0, 10?)), which does not assume
sparsity. Figure EC.3 shows the values of RMSE between true and estimates. All models can accurately
recover the true values, among which Bayesian lasso is superior to others in most of the scenarios. Moreover,
even when the scale of the model (U, T, K) is increased, the RMSEs of social influence do not get so worse as
the other parameters. Figure EC.4 shows the F-measure which is calculated by regarding users as influential
when the estimated [ is 0.5 or higher in absolute value. The F-measures are high in all scenarios, among
which Bayesian lasso outperforms the others, and it indicates that the proposed model can provide reliable

estimates of social influences among users.

EC.4 Simulation Experiments for Large Network Data

In this section, we discuss the computational cost of applying the proposed model to larger-scale networks,
rather than the medium-scale network dataset used in the empirical analysis. Figure EC.5 illustrates the

computation time required per iteration for estimating the proposed model as the number of users. As
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shown, the computation time increases exponentially with the number of users. This exponential growth
is likely due to the bottleneck caused by the matrix multiplication and inversion in Equation EC.10 and
EC.14, which could pose a significant challenge when applying the proposed model to large-scale networks.
Although this study has not identified a solution to this high computational cost, recent advancements in
machine learning, particularly in low-rank matrix approximations, offer promising avenues for reducing
computational demands. By leveraging these techniques, it may be possible to estimate user-specific topic
distributions with realistic computational costs by approximating the large-scale social influence network,
while still accurately estimating the social influence between user pairs. While addressing this challenge
is beyond the scope of the current study and remains a topic for future research, it is an essential issue

given the high demand in practice for effectively designing SMCs within large-scale networks involving
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EC.5 Summary of Literature Review

Discussion in Section 2.1 is summarized into Table EC.1.



ec9

Time per lteration (seconds)

3000 -

2000 -

1000 -

200

300 400 500 600 700
Number of Users

Figure EC.5 Computation time of the proposed model

800

900

1000



eclO

[opour

Jud) (Juduoo) (Juauod)
ddoy ﬁopﬂwomﬂwmm -u09 Jo so1doy pue sa3pg paesaIsgesiq SJUIUOD JFeWI PAJBIAUASZ JAS[) SIUAUOD IFBWI PIILIGUZ JAs() Apms smL
umyorew 21098 SI9sn uU9aMm}aq (6107) peseadewrey
fnsuodorg suonoouuod Jo  sodA[ pore3ai13sesiq (ewngoa) orsnw Suike[d (ATeUIqQ) OISNUI JO 9OUAIRJAI] pue —
uors JUQIUOD d d )
-501301 OUSISO] MOIAOI JO SUOISUSWI(T pog  (suwmpoa) sjonpoid jo aseyoing (3uayu09) syonpoid 10F INOM (6107) Te@ Iy
opott uwue jo (awnjoa) uondope
\O_MMMMM s1o1ABYQq JO sadA],  pojeSai3Sesiq (ewnjoa) owrue jo uondopy pue Au“.u:ocg ‘owno) H.ZOB (6107) 'Te 10 oWy
uors soure§ (Areurq) (qwnoa) .
-s13a1  JeoUI] SONSHRIOBIEYD 1onPOld nod Suikerd pue (swnjoa) Surpuadg sowreS ur sjonpoid Surpuadg (8102) e 12 41ed
uors 30133 (Areurq) 103
-sa13a1  IedUI] ) PoILoalesy (SWIN[OA) SMOUS AL JO SMIIA g1y poinIoar  AQ  199mI0Yy (L10T) 232 5U0D
uors dc 30133 (own (Areu1q) )
-s13a1  IBOUIT] ALHOMIUJO SICAL  Poresolostsi( -[0A) Pa9s Aq swei3oid Jo yoeay wea3ord uoISNYIp Ul JISn Paas (L10T) e 1 ua4)
uors ueLe)Imn 50133 (owmnjoA) ad 5 )
-$91391 IBQUIT puR WSIUBYOAW JULIBYS PoIEsalsoy elpow [eoos ul sdde jo yoeoy (ownjoa) sdde jo sutreys (¥102) T8 19 d7[nYo8
son
uors  -st9joeIRyd Jonpoid pue )
_so1801 onsi80] “Jopusd ‘wondope AL poresai3sesiq (Areurq) syonpoid jo ao10yD) (Areurq) syonpoid jo ao10yD) (€£102) 'Te 10 Suepp
‘osnradxe  ‘Ayurendod
son
uors  -swajoeIRyd Jonpoid pue .
_so1801 onsi3o] “opuss ‘ondope Apeo pare3ai33esiq (Areurq) syonpoad jo ao10YD (Areu1q) syonpoid jo ao10yD (€£102) 'Te 10 Suepp
‘osnradxe  ‘Aiueindog
uonen . . .
Ut -TeA9 1oy} pue moEa:.Em pore3aIS3y (ownjoa) Yuelr so[es (JUUOD "JUBLIEA "a0U[EA *Juin (1102) & 32 Yeyory
-s13a1  IBOUITT Ho:co& 10 cosQ&.BE -[0A) serowed [BISIP 10 WOM
[opowt pIezey
yI1omjau Jo sadA],  pejesai3Sesiq (Areuiq) Snip jo uondopy (Areurq ‘ownjoa) uonduosaig (1102) ‘Te 10 Te3uaL]
QUIN-9JAIDSI
uors
01801 u0SSIOg sa8pg  peoreSer33Sesiq Kyanoe ur-30] (swnjoa) Ayanoe ur-30| (0107) 'Te 30 Aosniy,
uors 50133 (own (owmnjoa) .
-s13a1  IBOUITT - bowoalooesid -1oa) uemdisAyd Aq suonduosarq Jopeo| uoruido £q suondrosaid (0102) T 1 11BN
uors (ownjoA) (ooueLIRA ‘Q0Ud[RA #002)
: - poresaI13sy . :
-so13a1  IBAUI] SMOUS AL JOJ Supel MOIIAQY ‘OWN[OA) SMOUS AT I0J ZNOM UIZAR]N pue  SOpon
[opowt
woIsnIIq - pa1e3133y (swnjoa) 30npoid jo aseyding (swnjoa) 30npoid jo aseyding (6961) sseq
[OPOJN  QOUSNJUI JO SIOJBIOPOIA] uone3aI33y SO[qeLIRA QWOJIN() QOUANUI JO SI0JOB] Iodeq

MITAQI QINJRIANI] JO AleWILING

T"DH 3Iq®L



ecll

References

Ameri, Mina, Elisabeth Honka, Ying Xie. 2019. Word of Mouth, Observed Adoptions, and Anime-Watching Deci-
sions: The Role of the Personal vs. the Community Network. Marketing Science, 38 (4), 567-583.

Archak, Nikolay, Anindya Ghose, Panagiotis G. Ipeirotis. 2011. Deriving the Pricing Power of Product Features by
Mining Consumer Reviews. Management Science, 57 (8), 1485-1509.

Bass, Frank M. 1969. A New Product Growth for Model Consumer Durables. Management Science, 15 (5), 215-227.

Bhattacharya, Anirban, Debdeep Pati, Natesh S. Pillai, David B. Dunson. 2015. Dirichlet-Laplace Priors for Optimal
Shrinkage. Journal of the American Statistical Association, 110 (512), 1479-1490.

Carvalho, Carlos M., Nicholas G. Polson, James G. Scott. 2010. The horseshoe estimator for sparse signals.
Biometrika, 97 (2), 465-480.

Cater, C. K., R. Kohn. 1994. On Gibbs sampling for state space models. Biometrika, 81 (3), 541-553.

Chen, Xi, Ralf Van der Lans, Tuan Q. Phan. 2017. Uncovering the Importance of Relationship Characteristics in
Social Networks: Implications for Seeding Strategies. Journal of Marketing Research, 54 (2), 187-201.

Godes, David, Dina Mayzlin. 2004. Using online conversations to study word-of-mouth communication. Marketing
Science, 23 (4),.

Gong, Shiyang, Juanjuan Zhang, Ping Zhao, Xuping Jiang. 2017. Tweeting as a marketing tool: A field experiment in
the TV industry. Journal of Marketing Research, 54 (6), 833-850.

Griffiths, T. L., M. Steyvers. 2004. Finding scientific topics. Proceedings of the National Academy of Sciences, 101
(Supplement 1), 5228-5235.

Iyengar, Raghuram, Christophe Van den Bulte, Thomas W. Valente. 2011. Opinion leadership and social contagion in
new product diffusion. Marketing Science, 30 (2), 195-212.

Liu, Xiao, Dokyun Lee, Kannan Srinivasan. 2019. Large-Scale Cross-Category Analysis of Consumer Review Content
on Sales Conversion Leveraging Deep Learning. Journal of Marketing Research, 56 (6), 918-943.

Nair, Harikesh S., Puneet Manchanda, Tulikaa Bhatia. 2010. Asymmetric Social Interactions in Physician Prescription
Behavior: The Role of Opinion Leaders. Journal of Marketing Research, 47 (5), 883-895.

Park, Eunho, Rishika Rishika, Ramkumar Janakiraman, Mark B. Houston, Byungjoon Yoo. 2018. Social dollars in
online communities: The effect of product, user, and network characteristics. Journal of Marketing, 82 (1),
93-114.

Polson, Nicholas G., James G. Scott, Jesse Windle. 2013. Bayesian inference for logistic models using Pélya-Gamma
latent variables. Journal of the American Statistical Association, 108 (504), 1339-1349.

Rishika, Rishika, Jui Ramaprasad. 2019. The Effects of Asymmetric Social Ties, Structural Embeddedness, and Tie
Strength on Online Content Contribution Behavior. Management Science, 65 (7), 3398-3422.

Rossi, Peter E., Greg M. Allenby, Robert McCulloch. 2005. Bayesian Statistics and Marketing, vol. 1. John Wiley &
Sons, Ltd, Chichester, UK.



ecl2

Sarkka, Simo. 2013. Bayesian Filtering and Smoothing. Cambridge University Press, Cambridge.

Schulze, Christian, Lisa Scholer, Bernd Skiera. 2014. Not all fun and games: Viral marketing for utilitarian products.
Journal of Marketing, 78 (1), 1-19.

Trusov, Michael, Anand V. Bodapati, Randolph E. Bucklin. 2010. Determining Influential Users in Internet Social
Networks. Journal of Marketing Research, 47 (4), 643-658.

Wang, Jing, Anocha Aribarg, Yves F. Atchadé. 2013. Modeling choice interdependence in a social network. Marketing
Science, 32 (6), 977-997.



