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Web Appendix A: Summary of Topic Modeling Applications in OKC Research 

Table A1 summarizes major studies about the topic modeling applications in OKC. To do so, we 

conduct an extensive literature search among premier journals in IS and other business 

disciplines, and reviewed recent studies that apply topic models on texts with Q&A relations and 

threaded structures.  

Table A1: Summary of Topic Modeling Applications on OKC Texts 

Ways to use 

topic vectors 

Authors 

(Year) 

Topic model 

applied 

Textual data Research topic 

As independent 

variables 

Yue et al. 

(2019) 

LDA Threaded posts in 

an online hacking 

forum 

Extracting topics discussed in online 

hacking forum posts and exploring 

the impact of topics on distributed 

denial of service attacks 

Narang et 

al. (2022) 

LDA Online learning 

discussions 

Identifying the impact of content 

type (i.e., topic) on learner 

engagement 

Gour et al. 

(2022) 

LDA Social media 

discussions 

Deriving topics from social media 

discussions to help predict the 

disease outbreak 

As dependent 

variables 

Singh et al. 

(2014) 

LDA Enterprise blogs 

and comments 

Impact of various factors (e.g., 

textual characteristics) on users’ 

blog-reading of different topics 

Li et al. 

(2016) 

LDA Threaded 

advertisements in a 

cyber-carding 

community 

Profiling key sellers using the 

derived topic vectors of 

advertisement threads 

Geva et al. 

(2019) 

LDA Threaded Tweets Identifying users’ interested topics 

from their blogs and studying the 

user behavior of shaping online 

persona via retweets 

As control 

variables 

Bapna et al. 

(2019) 

LDA Posts and 

comments in online 

brand communities 

Impact of posts content dimensions 

on user engagement with topics as 

control variables 

Xie et al. 

(2020) 

LDA Online Bitcoin-

related discussion 

threads 

Controlling the topics of discussion 

threads to identify the role of 

network cohesion in predicting 

Bitcoin returns 

Kumar et 

al. (2022) 

LDA Posts and 

comments in online 

brand communities 

Impact of trademarking hashtags on 

social media consumer engagement 

with topics as control variables 

Deriving new 

variables 

Lappas et 

al. (2016) 

LDA Customers’ reviews 

and businesses’ 

responses 

Using the derived topics to further 

classify businesses’ responses to 

customers’ comments into different 

types 



Guo et al. 

(2017) 

LDA, hLDA, 

and DTM 

Articles and 

comments on a 

blogging platform 

Using the derived topics to extract 

representative information 

Samtani et 

al. (2017) 

LDA Posts and 

comments in an 

online hacker 

forum 

Building topic-specific social 

networks based on the topics learned 

from texts 

Hwang et 

al. (2019) 

LDA Q&A posts in a 

customer support 

crowdsourcing 

community 

Constructing each user’s information 

network based on learned topics to 

further explore how topic-based 

information network influences the 

generation of novel ideas. 

Kokkodis 

et al. 

(2020) 

LDA Q&A posts in an 

online diabetes 

community 

Categorizing users into different 

contribution types by the topics of 

their posts 

Mousavi et 

al. (2020) 

HDP Q&A posts in a 

health-related 

community 

Calculating the topic similarity 

between an answer and the question 

based on the derived topic vectors 

Pu et al. 

(2020) 

LDA Q&A posts on an 

enterprise platform 

Impact of identity disclosure on 

users’ effort measured by the topic 

similarity of Q&A 

Bachura et 

al. (2022) 

LDA Threaded Tweets Extracting breach-related concepts 

based on top salient terms from each 

topic 

Kyriakou et 

al. (2022) 

CTM Descriptions and 

comments of 

product designs in 

an online 

innovation 

community 

Using derived topic vectors to 

calculate the similarity among 

product designs to further measure 

novelty 

Oh et al. 

(2022) 

LDA News articles Combining learned topics with 

sentiment analysis to calculate topic 

valence 

Pu et al. 

(2022) 

LDA Q&A posts on an 

enterprise platform 

Effects of hierarchy on question 

answering, controlling user’s 

knowledge level measured by the 

topic similarity between the question 

and the user’s existing answers 
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Web Appendix B: Details of Variational Inference 

B.1. The Objective Function: ELBO 

The ELBO is given in Equation (3) of Section 3.3. Before deriving optimization procedures in 

the coordinate ascent algorithm, we write each term of the ELBO in a specific functional form 

as follows. 

(1) The first term (1): 

𝐸𝑢[log 𝑝(𝜼𝒒; 𝛍, 𝚺𝒒)] =
1

2
log|𝚺𝒒

−𝟏| −
𝐾

2
log 2𝜋 −

1

2
𝐸𝑢 [(𝜼𝒒 − 𝛍)

𝑇
𝚺𝒒

−𝟏(𝜼𝒒 − 𝛍)],  

where 

𝐸𝑢[(𝜼𝒒 − 𝛍)𝑇𝚺𝒒
−𝟏(𝜼𝒒 − 𝛍)] = 𝑇𝑟[𝑑𝑖𝑎𝑔(𝝈𝒒)2𝚺𝒒

−𝟏] + (𝝀𝒒 − 𝛍)
𝑇

𝚺𝒒
−𝟏(𝝀𝒒 − 𝛍). 

(2) The second term (𝑁𝑞): 

𝐸𝑢[log 𝑝(𝑧𝑞

𝑛𝑞|𝜼𝒒)] = 𝐸𝑢[𝜼𝒒
𝑻𝝓𝒒

𝒏𝒒] − 𝐸𝑢 [log (∑ 𝑒𝜼𝒒
𝒌

𝐾

𝑘=1

)] = ∑ 𝜆𝑞
𝑘𝜙𝑞

𝑛𝑞,𝑘
𝐾

𝑘=1

− 𝐸𝑢 [log (∑ 𝑒𝜼𝒒
𝒌

𝐾

𝑘=1

)]. 

As a logistic normal distribution is not conjugate to multinomial distribution, this 

term 𝐸𝑢 [log (∑ 𝑒𝜼𝒒
𝒌𝐾

𝑘=1 )] cannot be analytically computed. To preserve the lower bound on the 

log probability, we use a Taylor expansion here: 

𝐸𝑢 [log (∑ 𝑒𝜼𝒒
𝒌

𝐾

𝑘=1

)] ≤ 𝜉𝑞
−1 (∑ 𝐸𝑢 (𝑒𝜼𝒒

𝒌
)

𝐾

𝑘=1

) + log 𝜉𝑞 − 1. 

As 𝐸𝑢 (𝑒𝜼𝒒
𝒌
) = 𝑒𝝀𝒒

𝒌+
𝟏

𝟐
(𝜎𝑞

𝑘)
2

, we know that: 

𝐸𝑢[log 𝑝(𝑧𝑞

𝑛𝑞|𝜼𝒒)] ≥ ∑ 𝜆𝑞
𝑘𝜙𝑞

𝑛𝑞,𝑘
𝐾

𝑘=1

− 𝜉𝑞
−1 (∑ 𝑒𝜆𝑞

𝑘+
1
2(𝜎𝑞

𝑘)
2

𝐾

𝑘=1

) − log 𝜉𝑞 + 1. 

(3) The third term (𝑁𝑞): 



𝐸𝑢[log 𝑝(𝑤𝑞

𝑛𝑞|𝑧𝑞

𝑛𝑞 , 𝜷𝒒
𝟏:𝑲)] = ∑ 𝜙𝑞

𝑛𝑞,𝑘
𝐾

𝑘=1

𝐸𝑢 (log 𝛽𝑞

k,𝑛𝑞) = ∑ 𝜙𝑞

𝑛𝑞,𝑘
𝐾

𝑘=1

[ψ (𝜏𝑞

𝑘,𝑛𝑞) − ψ (∑ 𝜏𝑞
𝑘,𝑣

𝑉

𝑣=1

)]. 

(4) The fourth term (K): 

𝐸𝑢[log 𝑝(𝜷𝒒
𝒌; 𝜶𝒒)] = − log 𝐵(𝜶𝒒) + ∑ (α𝑞

𝑣 − 1)[ψ(𝜏𝑞
𝑘,𝑣) − ψ(∑ 𝜏𝑞

𝑘,𝑣𝑉
𝑣=1 )]𝑉

𝑣=1 ,  

where V is the vocabulary size. 

(5) The fifth term (1): 

𝐸𝑢[log 𝑝(𝒙𝒅; 𝜹)] = − log 𝐵(𝜹) + ∑(𝛿𝑖 − 1) [ψ(𝜈𝑑
𝑖 ) − ψ (∑ 𝜈𝑑

𝑖

2

𝑖=1

)] .

2

𝑖=1

 

(6) The sixth term (T): 

𝐸𝑢[log 𝑝(𝒚𝒂𝒕
|𝒙𝒅)] = ∑ 𝜓𝑎𝑡

𝑖 𝐸𝑢[log(𝑥𝑑
𝑖 )]

2

𝑖=1

= ∑ 𝜓𝑎𝑡

𝑖 [ψ(𝜈𝑑
𝑖 ) − ψ (∑ 𝜈𝑑

𝑖

2

𝑖=1

)]

2

𝑖=1

. 

(7) The seventh term (T): 

𝐸𝑢 [log 𝑝 (𝜼𝒂𝒕
|𝜼𝒒, 𝜼

𝒂𝒕−𝟏
, 𝒚𝒂𝒕

; 𝚺𝒂𝒇
, 𝚺𝒂𝒏

, 𝛾)]

= 𝜓𝑎𝑡
1 {

1

2
log |𝚺𝒂𝒇

−𝟏| −
𝐾

2
log 2𝜋

−
1

2
𝐸𝑢 [(𝜼𝒂𝒕

−
𝜼𝒒 + 𝛾𝜼

𝒂𝒕−𝟏

1 + 𝛾
)

𝑇

𝚺𝒂𝒇
−𝟏 (𝜼𝒂𝒕

−
𝜼𝒒 + 𝛾𝜼

𝒂𝒕−𝟏

1 + 𝛾
)]}

+ 𝜓𝑎𝑡
2 {

1

2
log|𝚺𝒂𝒏

−𝟏| −
𝐾

2
log 2𝜋 −

1

2
𝐸𝑢 [(𝜼𝒂𝒕

− 𝜼𝒒)
𝑇

𝚺𝒂𝒏
−𝟏(𝜼𝒂𝒕

− 𝜼𝒒)]}. 

Let A = 𝐸𝑢 [(𝜼𝒂𝒕
−

𝜼𝒒+𝛾𝜼𝒂𝒕−𝟏

1+𝛾
)

𝑇

𝚺𝒂𝒇
−𝟏 (𝜼𝒂𝒕

−
𝜼𝒒+𝛾𝜼𝒂𝒕−𝟏

1+𝛾
)], then: 

If t = 1, 

𝐴 = 𝑇𝑟 [𝑑𝑖𝑎𝑔(𝝈𝒂𝒕
)2𝚺𝒂𝒇

−𝟏] + 𝑇𝑟 [𝑑𝑖𝑎𝑔(𝝈𝒒)2𝚺𝒂𝒇
−𝟏] + (𝝀𝒂𝒕

− 𝝀𝒒)
𝑻

𝚺𝒂𝒇
−𝟏(𝝀𝒂𝒕

− 𝝀𝒒). 

If t ≥ 2, 



𝐴 = 𝑇𝑟 [𝑑𝑖𝑎𝑔(𝝈𝒂𝒕
)2𝚺𝒂𝒇

−𝟏] +
1

(1 + 𝛾)2
𝑇𝑟 [𝑑𝑖𝑎𝑔(𝝈𝒒)2𝚺𝒂𝒇

−𝟏] + ∑ (
𝛾휁𝑖

𝑡

1 + 𝛾
)

2

𝑇𝑟 [𝑑𝑖𝑎𝑔(𝝈𝒂𝒊
)2𝚺𝒂𝒇

−𝟏]

𝑡−1

𝑖=1

+ (𝝀𝒂𝒕
−

1

1 + 𝛾
𝝀𝒒 − ∑

𝛾휁𝑖
𝑡

1 + 𝛾
𝝀𝒂𝒊

𝒕−𝟏

𝒊=𝟏

)

𝑻

𝚺𝒂𝒇
−𝟏 (𝝀𝒂𝒕

−
1

1 + 𝛾
𝝀𝒒 − ∑

𝛾휁𝑖
𝑡

1 + 𝛾
𝝀𝒂𝒊

𝒕−𝟏

𝒊=𝟏

). 

Let B = 𝐸𝑢 [(𝜼𝒂𝒕
− 𝜼𝒒)

𝑇
𝚺𝒂𝒏

−𝟏(𝜼𝒂𝒕
− 𝜼𝒒)], then: 

𝐵 = 𝑇𝑟[𝑑𝑖𝑎𝑔(𝝈𝒂𝒕
)2𝚺𝒂𝒏

−𝟏] + 𝑇𝑟[𝑑𝑖𝑎𝑔(𝝈𝒒)2𝚺𝒂𝒏
−𝟏] + (𝝀𝒂𝒕

− 𝝀𝒒)
𝑻

𝚺𝒂𝒏
−𝟏(𝝀𝒂𝒕

− 𝝀𝒒). 

(8) The eighth term (∑ 𝑁𝑎𝑡
𝑇
𝑡=1 , similar to the second term): 

𝐸𝑢 [log 𝑝(𝑧𝑎𝑡

𝑛𝑎𝑡|𝜼𝒂𝒕
)] = 𝐸𝑢[𝜼𝒂𝒕

𝑻 𝝓𝒂𝒕

𝒏𝒂𝒕 ] − 𝐸𝑢 [log (∑ 𝑒𝜂𝑎𝑡
𝑘

𝐾

𝑘=1

)]

= ∑ 𝜆𝑎𝑡
𝑘 𝜙𝑎𝑡

𝑛𝑎𝑡
,𝑘

𝐾

𝑘=1

− 𝐸𝑢 [log (∑ 𝑒𝜼𝑎𝑡
𝒌

𝐾

𝑘=1

)]

≥ ∑ 𝜆𝑎𝑡
𝑘 𝜙𝑎𝑡

𝑛𝑎𝑡
,𝑘

𝐾

𝑘=1

− 𝜉𝑎𝑡
−1 (∑ 𝑒𝜆𝑎𝑡

𝑘 +
1
2(𝜎𝑎𝑡

𝑘 )
2

𝐾

𝑘=1

) − log 𝜉𝑎𝑡
+ 1. 

(9) The ninth term (∑ 𝑁𝑎𝑡
𝑇
𝑡=1 , similar to the third term): 

𝐸𝑢 [log 𝑝(𝑤𝑎𝑡

𝑛𝑎𝑡 |𝑧𝑎𝑡

𝑛𝑎𝑡 , 𝜷𝒂
𝟏:𝑲)] = ∑ 𝜙𝑎𝑡

𝑛𝑎𝑡
,𝑘

𝐾

𝑘=1

𝐸𝑢 (log 𝛽𝑎

k,𝑛𝑎𝑡 )

= ∑ 𝜙𝑎𝑡

𝑛𝑎𝑡
,𝑘

𝐾

𝑘=1

[ψ (𝜏𝑎

𝑘,𝑛𝑎𝑡) − ψ (∑ 𝜏𝑎
𝑘,𝑣

𝑉

𝑣=1

)]. 

(10) The tenth term (𝐾, similar to the fourth term): 

𝐸𝑢[log 𝑝(𝜷𝒂
𝒌; 𝜶𝒂)] = − log 𝐵(𝜶𝒂) + ∑(α𝑎

𝑣 − 1) [ψ(𝜏𝑎
𝑘,𝑣) − ψ (∑ 𝜏𝑎

𝑘,𝑣

𝑉

𝑣=1

)]

𝑉

𝑣=1

. 

(11) The eleventh term (1, the entropy term): 



𝐻(𝑢) = ∑
1

2

𝐾

𝑘=1

[log(𝜎𝑞
𝑘)

2
+ log 2𝜋 + 1] + ∑ ∑

1

2
[log(𝜎𝑎𝑡

𝑘 )
2

+ log 2𝜋 + 1]

𝐾

𝑘=1

𝑇

𝑡=1

+ log 𝐵(𝝂𝒅)

− ∑(𝜈𝑑
𝑖 − 1) [ψ(𝜈𝑑

𝑖 ) − ψ (∑ 𝜈𝑑
𝑖

2

𝑖=1

)]

2

𝑖=1

− ∑ ∑ 𝜓𝑎𝑡
𝑖 log 𝜓𝑎𝑡

𝑖

2

𝑖=1

𝑇

𝑡=1

− ∑ ∑ 𝜙𝑞

𝑛𝑞,𝑘
log 𝜙𝑞

𝑛𝑞,𝑘
𝐾

𝑘=1

𝑁𝑞

𝑛𝑞=1

− ∑ ∑ ∑ 𝜙𝑎𝑡

𝑛𝑎𝑡
,𝑘

log 𝜙𝑎𝑡

𝑛𝑎𝑡
,𝑘

𝐾

𝑘=1

𝑁𝑎𝑡

𝑛𝑎𝑡
=1

𝑇

𝑡=1

+ ∑ log 𝐵(𝝉𝒒
𝒌)

𝐾

𝑘=1

− ∑ ∑(𝜏𝑞
𝑘,𝑣 − 1) [ψ(𝜏𝑞

𝑘,𝑣) − ψ (∑ 𝜏𝑞
𝑘,𝑣

𝑉

𝑣=1

)]

𝑉

𝑣=1

𝐾

𝑘=1

+ ∑ log 𝐵(𝝉𝒂
𝒌)

𝐾

𝑘=1

− ∑ ∑(𝜏𝑎
𝑘,𝑣 − 1) [ψ(𝜏𝑎

𝑘,𝑣) − ψ (∑ 𝜏𝑞
𝑘,𝑣

𝑉

𝑣=1

)]

𝑉

𝑣=1

𝐾

𝑘=1

. 

To summarize, the ELBO is given by: 



𝐸𝐿𝐵𝑂 =
1

2
log|𝚺𝒒

−𝟏| −
𝐾

2
log 2𝜋 −

1

2
𝑇𝑟 [𝑑𝑖𝑎𝑔(𝝈𝒒)

2
𝚺𝒒

−𝟏] −
1

2
(𝝀𝒒 − 𝛍)

𝑇
𝚺𝒒

−𝟏(𝝀𝒒 − 𝛍)

+ ∑ {∑ 𝜆𝑞
𝑘𝜙𝑞

𝑛𝑞,𝑘
𝐾

𝑘=1

− 𝜉𝑞
−1 (∑ 𝑒𝜆𝑞

𝑘+
1
2(𝜎𝑞

𝑘)
2

𝐾

𝑘=1

) − log 𝜉𝑞 + 1}

𝑁𝑞

𝑛𝑞=1

+ ∑ {∑ 𝜙𝑞

𝑛𝑞,𝑘
𝐾

𝑘=1

[ψ (𝜏𝑞

𝑘,𝑛𝑞) − ψ (∑ 𝜏𝑞
𝑘,𝑣

𝑉

𝑣=1

)]}

𝑁𝑞

𝑛𝑞=1

+ ∑ {− log 𝐵(𝜶𝒒) + ∑(α𝑞
𝑣 − 1) [ψ(𝜏𝑞

𝑘,𝑣) − ψ (∑ 𝜏𝑞
𝑘,𝑣

𝑉

𝑣=1

)]

𝑉

𝑣=1

}

𝐾

𝑘=1

− log 𝐵(𝜹)

+ ∑(𝛿𝑖 − 1) [ψ(𝜈𝑑
𝑖 ) − ψ (∑ 𝜈𝑑

𝑖

2

𝑖=1

)]

2

𝑖=1

+ ∑ ∑ 𝜓𝑎𝑡
𝑖 [ψ(𝜈𝑑

𝑖 ) − ψ (∑ 𝜈𝑑
𝑖

2

𝑖=1

)]

2

𝑖=1

𝑇

𝑡=1

+ ∑ {𝜓𝑎𝑡
1 {

1

2
log |𝚺𝒂𝒇

−𝟏| −
𝐾

2
log 2𝜋

𝑇

𝑡=1

−
1

2
𝐸𝑢 [(𝜼𝒂𝒕

−
𝜼𝒒 + 𝛾𝜼

𝒂𝒕−𝟏

1 + 𝛾
)

𝑇

𝚺𝒂𝒇

−𝟏 (𝜼𝒂𝒕
−

𝜼𝒒 + 𝛾𝜼
𝒂𝒕−𝟏

1 + 𝛾
)]}

+ 𝜓𝑎𝑡
2 {

1

2
log|𝚺𝒂𝒏

−𝟏| −
𝐾

2
log 2𝜋 −

1

2
𝐸𝑢 [(𝜼𝒂𝒕

− 𝜼𝒒)
𝑇

𝚺𝒂𝒏
−𝟏(𝜼𝒂𝒕

− 𝜼𝒒)]}}

+ ∑ ∑ {∑ 𝜆𝑎𝑡
𝑘 𝜙𝑎𝑡

𝑛𝑎𝑡
,𝑘

𝐾

𝑘=1

− 𝜉𝑎𝑡
−1 (∑ 𝑒𝜆𝑎𝑡

𝑘 +
1
2(𝜎𝑎𝑡

𝑘 )
2

𝐾

𝑘=1

) − log 𝜉𝑎𝑡
+ 1}

𝑁𝑎𝑡

𝑛𝑎𝑡
=1

𝑇

𝑡=1

+ ∑ ∑ {∑ 𝜙𝑎𝑡

𝑛𝑎𝑡
,𝑘

𝐾

𝑘=1

[ψ (𝜏𝑎

𝑘,𝑛𝑎𝑡 ) − ψ (∑ 𝜏𝑎
𝑘,𝑣

𝑉

𝑣=1

)]}

𝑁𝑎𝑡

𝑛𝑎𝑡
=1

𝑇

𝑡=1

+ ∑ {− log 𝐵(𝜶𝒂) + ∑(α𝑎
𝑣 − 1) [ψ(𝜏𝑎

𝑘,𝑣) − ψ (∑ 𝜏𝑎
𝑘,𝑣

𝑉

𝑣=1

)]

𝑉

𝑣=1

}

𝐾

𝑘=1



+ ∑
1

2

𝐾

𝑘=1

[log(𝜎𝑞
𝑘)

2
+ log 2𝜋 + 1] + ∑ ∑

1

2
[log(𝜎𝑎𝑡

𝑘 )
2

+ log 2𝜋 + 1]

𝐾

𝑘=1

𝑇

𝑡=1

+ log 𝐵(𝝂𝒅) − ∑(𝜈𝑑
𝑖 − 1) [ψ(𝜈𝑑

𝑖 ) − ψ (∑ 𝜈𝑑
𝑖

2

𝑖=1

)]

2

𝑖=1

− ∑ ∑ 𝜓𝑎𝑡
𝑖 log 𝜓𝑎𝑡

𝑖

2

𝑖=1

𝑇

𝑡=1

− ∑ ∑ 𝜙𝑞

𝑛𝑞,𝑘
log 𝜙𝑞

𝑛𝑞,𝑘
𝐾

𝑘=1

𝑁𝑞

𝑛𝑞=1

− ∑ ∑ ∑ 𝜙𝑎𝑡

𝑛𝑎𝑡
,𝑘

log 𝜙𝑎𝑡

𝑛𝑎𝑡
,𝑘

𝐾

𝑘=1

𝑁𝑎𝑡

𝑛𝑎𝑡
=1

𝑇

𝑡=1

+ ∑ log 𝐵(𝝉𝒒
𝒌)

𝐾

𝑘=1

− ∑ ∑(𝜏𝑞
𝑘,𝑣 − 1) [ψ(𝜏𝑞

𝑘,𝑣) − ψ (∑ 𝜏𝑞
𝑘,𝑣

𝑉

𝑣=1

)]

𝑉

𝑣=1

𝐾

𝑘=1

+ ∑ log 𝐵(𝝉𝒂
𝒌)

𝐾

𝑘=1

− ∑ ∑(𝜏𝑎
𝑘,𝑣 − 1) [ψ(𝜏𝑎

𝑘,𝑣) − ψ (∑ 𝜏𝑞
𝑘,𝑣

𝑉

𝑣=1

)]

𝑉

𝑣=1

𝐾

𝑘=1

. 

B.2. Optimization Algorithm 

For optimization in the variational inference, we use the coordinate ascent algorithm, 

iteratively maximizing the ELBO with respect to each variational parameter. Here we derive to 

update these parameters, including 𝝃𝒒, 𝝓𝒒, 𝝀𝒒, 𝝈𝒒, 𝝃𝒂𝒕
, 𝝓𝒂𝒕

, 𝝀𝒂𝒕
, 𝝈𝒂𝒕

, 𝝍𝒂𝒕
, 𝝂𝒅, 𝝉𝒒, 𝝉𝒂. 

(1) Maximize with respect to 𝜉𝑞  

𝑑𝐸𝐿𝐵𝑂

𝑑𝜉𝑞
= 𝑁𝑞 [𝜉𝑞

−2 (∑ 𝑒𝜆𝑞
𝑘+

1
2(𝜎𝑞

𝑘)
2

𝐾

𝑘=1

) − 𝜉𝑞
−1]. 

Set 
𝑑𝐸𝐿𝐵𝑂

𝑑𝜉𝑞
= 0, we obtain: 𝜉𝑞

∗ = ∑ 𝑒𝜆𝑞
𝑘+

1

2
(𝜎𝑞

𝑘)
2

𝐾
𝑘=1 . Note that this is 𝐸𝑞 (∑ 𝑒𝜼𝒒

𝒌𝐾
𝑘=1 ). 

(2) Maximize with respect to 𝝓𝒒

𝒏𝒒
 

𝑑𝐸𝐿𝐵𝑂

𝑑𝜙𝑞

𝑛𝑞,𝑘 = 𝜆𝑞
𝑘 + [ψ (𝜏𝑞

𝑘,𝑛𝑞) − ψ (∑ 𝜏𝑞
𝑘,𝑣

𝑉

𝑣=1

)] − log 𝜙𝑞

𝑛𝑞,𝑘
− 1. 



Since ∑ 𝜙𝑞

𝑛𝑞,𝑘𝐾
𝑘=1 = 1, 

𝑑𝐸𝐿𝐵𝑂

𝑑𝜙𝑞

𝑛𝑞,𝑘 = 0 implies 𝜙𝑞

𝑛𝑞,𝑘
∝ 𝑒

𝜆𝑞
𝑘+[ψ(𝜏𝑞

𝑘,𝑛𝑞
)−ψ(∑ 𝜏𝑞

𝑘,𝑣𝑉
𝑣=1 )]

, so then we can 

write the updating formula as follows: 

𝜙𝑞

𝑛𝑞,𝑘
=

𝑒
𝜆𝑞

𝑘+[ψ(𝜏𝑞

𝑘,𝑛𝑞
)−ψ(∑ 𝜏𝑞

𝑘,𝑣𝑉
𝑣=1 )]

∑ 𝑒
𝜆𝑞

𝑘+[ψ(𝜏𝑞

𝑘,𝑛𝑞
)−ψ(∑ 𝜏𝑞

𝑘,𝑣𝑉
𝑣=1 )]𝐾

𝑘=1

. 

(3) Maximize with respect to 𝝀𝒒 

𝑑𝐸𝐿𝐵𝑂

𝑑𝝀𝒒
= −𝚺𝒒

−𝟏(𝝀𝒒 − 𝛍) + ∑ 𝝓𝒒

𝒏𝒒

𝑁𝑞

𝑛𝑞=1

−
𝑁𝑞

𝜉𝑞
(𝑒𝝀𝒒+

1
2

(𝝈𝒒)
2

) + 𝜓𝑎1
1 𝚺𝒂𝒇

−𝟏(𝝀𝒂𝟏
− 𝝀𝒒)

+
1

1 + 𝛾
∑ 𝜓𝑎𝑡

1 𝚺𝒂𝒇
−𝟏 (𝝀𝒂𝒕

−
1

1 + 𝛾
𝝀𝒒 − ∑

𝛾휁𝑖
𝑡

1 + 𝛾
𝝀𝒂𝒊

𝑡−1

𝑖=1

)

𝑇

𝑡=2

+ ∑ 𝜓𝑎𝑡
2 𝚺𝒂𝒏

−𝟏(𝝀𝒂𝒕
− 𝝀𝒒)

𝑇

𝑡=1

. 

Set 
𝑑𝐸𝐿𝐵𝑂

𝑑𝝀𝒒
= 0, and we find that this cannot be analytically solved. In previous studies, numerical 

methods have often been applied in variational inference for nonconjugate models (Blei and 

Lafferty 2005; Blei and Lafferty 2007; Wang and Blei 2013; Roberts et al. 2016). Thus, we use 

the extended limited memory BFGS (Byrd et al. 1995; Wang et al. 2021) algorithm to update 𝝀𝒒 

numerically. Moreover, note that as the Hessian matrix of ELBO on 𝝀𝒒 is negative-definite, this 

is a convex optimization problem, which guarantees that we can achieve the global optimum 

with the numerical method: 

𝐻(𝐸𝐿𝐵𝑂)𝝀𝒒
= −𝚺𝒒

−𝟏 −
𝑁𝑞

𝜉𝑞
(𝑒𝝀𝒒+

1
2(𝝈𝒒)

2

) − 𝜓𝑎1

1 𝚺𝒂𝒇

−𝟏 −
1

(1 + 𝛾)2
∑ 𝜓𝑎𝑡

1 𝚺𝒂𝒇

−𝟏

𝑇

𝑡=2

− ∑ 𝜓𝑎𝑡

2 𝚺𝒂𝒏

−𝟏

𝑇

𝑡=1

. 

(4) Maximize with respect to 𝝈𝒒 



𝑑𝐸𝐿𝐵𝑂

𝑑(𝜎𝑞
𝑘)

2 = −
1

2
𝚺𝒒

−𝟏(𝒌,𝒌)
−

𝑁𝑞

2𝜉𝑞
(𝑒𝜆q

𝑘+
1
2(𝜎q

𝑘)
2

) −
1

2
𝜓𝑎1

1 𝚺𝒂𝒇
−𝟏(𝒌,𝒌)

−
1

2
∑

𝜓𝑎𝑡
1

(1 + 𝛾)2
𝚺𝒂𝒇

−𝟏(𝒌,𝒌)
𝑻

𝒕=𝟐

−
1

2
∑ 𝜓𝑎𝑡

2 𝚺𝒂𝒏
−𝟏(𝒌,𝒌)

𝑻

𝒕=𝟏

+
1

2(𝜎𝑞
𝑘)

2. 

Similar to 𝝀𝒒, we use the extended limited memory BFGS to update 𝝈𝒒. This is also a convex 

optimization problem since the second derivative of ELBO on (𝜎𝑞
𝑘)

2
 is negative: 

𝑑2𝐸𝐿𝐵𝑂

[𝑑(𝜎𝑞
𝑘)

2
]

2 = −
𝑁𝑞

4𝜉𝑞
(𝑒𝜆q

𝑘+
1
2

(𝜎q
𝑘)

2

) −
1

2 [(𝜎𝑞
𝑘)

2
]

2. 

(5) Maximize with respect to 𝜉𝑎𝑡
, t = 1: T 

𝑑𝐸𝐿𝐵𝑂

𝑑𝜉𝑎𝑡

= 𝑁𝑎 [𝜉𝑎𝑡

−2 (∑ 𝑒𝜆𝑎𝑡
𝑘 +

1
2

(𝜎𝑎𝑡
𝑘 )

2
𝐾

𝑘=1

) − 𝜉𝑎𝑡

−1]. 

Set 
𝑑𝐸𝐿𝐵𝑂

𝑑𝜉𝑎𝑡

= 0, we obtain 𝜉𝑎𝑡
∗ = ∑ 𝑒𝜆𝑎𝑡

𝑘 +
1

2
(𝜎𝑎𝑡

𝑘 )
2

𝐾
𝑘=1 . Note that this is 𝐸𝑞 (∑ 𝑒𝜼𝑎𝑡

𝒌𝐾
𝑘=1 ). 

(6) Maximize with respect to 𝝓𝒂𝒕

𝒏𝒂𝒕 , t = 1: T 

𝑑𝐸𝐿𝐵𝑂

𝑑𝜙𝑎𝑡

𝑛𝑎𝑡
,𝑘 = 𝜆𝑎𝑡

𝑘 + [ψ (𝜏𝑎

𝑘,𝑛𝒂𝒕 ) − ψ (∑ 𝜏𝑎
𝑘,𝑣

𝑉

𝑣=1

)] − log 𝜙𝒂𝒕

𝑛𝒂𝒕 ,𝑘
− 1. 

Since ∑ 𝜙𝑎𝑡

𝑛𝑎𝑡
,𝑘𝐾

𝑘=1 = 1, 

𝜙𝑎𝑡

𝑛𝑎𝑡
,𝑘

∝ 𝑒
𝜆𝑎𝑡

𝑘 +[ψ(𝜏𝑎

𝑘,𝑛𝑎𝑡)−ψ(∑ 𝜏𝑎
𝑘,𝑣𝑉

𝑣=1 )]
, specifically 𝜙𝑎𝑡

𝑛𝑎𝑡
,𝑘

=
𝑒

𝜆𝑎𝑡
𝑘 +[ψ(𝜏𝑎

𝑘,𝑛𝑎𝑡)−ψ(∑ 𝜏𝑎
𝑘,𝑣𝑉

𝑣=1 )]

∑ 𝑒
𝜆𝑎𝑡

𝑘 +[ψ(𝜏𝑎

𝑘,𝑛𝑎𝑡)−ψ(∑ 𝜏𝑎
𝑘,𝑣𝑉

𝑣=1 )]𝐾
𝑘=1

. 

(7) Maximize with respect to 𝝀𝑎𝑡
, t = 1: T 

When t = 1: 



𝑑𝐸𝐿𝐵𝑂

𝑑𝝀𝒂𝒕

= 𝜓𝑎𝑡
1 [−𝚺𝒂𝒇

−𝟏(𝝀𝒂𝒕
− 𝝀𝒒) + ∑

𝛾휁𝑡
𝑗

1 + 𝛾
𝚺𝒂𝒇

−𝟏 (𝝀𝒂𝒋
−

1

1 + 𝛾
𝝀𝒒 − ∑

𝛾휁𝑖
𝑗

1 + 𝛾
𝝀𝒂𝒊

𝑗−1

𝑖=1

)

𝑇

𝑗=𝑡+1

]

+ 𝜓𝑎𝑡
2 [−𝚺𝒂𝒏

−𝟏(𝝀𝒂𝒕
− 𝝀𝒒)] + ∑ 𝝓𝑎𝑡

𝒏𝑎𝑡

𝑁𝑎𝑡

𝑛𝑎𝑡
=1

−
𝑁𝑎𝑡

𝜉𝑎𝑡

(𝑒𝝀𝒂𝒕+
1
2(𝝈𝒂𝒕)

2

). 

When t ≥ 2: 

𝑑𝐸𝐿𝐵𝑂

𝑑𝝀𝑎𝑡

= 𝜓𝑎𝑡
1 [−𝚺𝒂𝒇

−𝟏 (𝝀𝒂𝒕
−

1

1 + 𝛾
𝝀𝒒 − ∑

𝛾휁𝑖
𝑡

1 + 𝛾
𝝀𝒂𝒊

𝑡−1

𝑖=1

)

+ ∑
𝛾휁𝑡

𝑗

1 + 𝛾
𝚺𝒂𝒇

−𝟏 (𝝀𝒂𝒋
−

1

1 + 𝛾
𝝀𝒒 − ∑

𝛾휁𝑖
𝑗

1 + 𝛾
𝝀𝒂𝒊

𝑗−1

𝑖=1

)

𝑇

𝑗=𝑡+1

] + 𝜓𝑎𝑡
2 [−𝚺𝒂𝒏

−𝟏(𝝀𝒂𝒕
− 𝝀𝒒)]

+ ∑ 𝝓𝑎𝑡

𝒏𝑎𝑡

𝑁𝑎𝑡

𝑛𝑎𝑡
=1

−
𝑁𝑎𝑡

𝜉𝑎𝑡

(𝑒𝝀𝒂𝒕+
1
2(𝝈𝒂𝒕)

2

). 

Similar to 𝝀𝒒, this is a convex optimization problem because the Hessian matrix of ELBO on 𝝀𝑎𝑡
 

is negative-definite: 

𝐻(𝐸𝐿𝐵𝑂)𝝀𝑎𝑡
= −𝜓𝑎𝑡

1 𝚺𝒂𝒇
−𝟏 − 𝜓𝑎𝑡

1 ∑ (
𝛾휁𝑡

𝑗

1 + 𝛾
)

2

𝚺𝒂𝒇
−𝟏

𝑇

𝑗=𝑡+1

− 𝜓𝑎𝑡
2 𝚺𝒂𝒏

−𝟏 −
𝑁𝑎𝑡

𝜉𝑎𝑡

(𝑒𝝀𝒂𝒕+
1
2(𝝈𝒂𝒕)

2

). 

Therefore, we use the extended limited memory BFGS to update 𝝀𝑎𝑡
. From this updating 

process, we can see that the topic distribution of a focal answer is impacted by not only the focal 

question and former answers, but also the latter answers. In other words, our Bayesian 

framework takes the bi-directional correlations of threaded answers into account, which 

enhances the capability of posterior model inference. 

(8) Maximize with respect to 𝝈𝒂𝒕
, t = 1: T 



𝑑𝐸𝐿𝐵𝑂

𝑑(𝜎𝑎𝑡
𝑘 )

2 = 𝜓𝑎𝑡
1 [−

1

2
𝚺𝒂𝒇

−𝟏(𝒌,𝒌)
−

1

2
∑ (

𝛾휁𝑡
𝑗

1 + 𝛾
)

2

𝚺𝒂𝒇
−𝟏(𝒌,𝒌)

𝑇

𝑗=𝑡+1

] + 𝜓𝑎𝑡
2 [−

1

2
𝚺𝒂𝒏

−𝟏(𝒌,𝒌)
]

−
𝑁𝑎𝑡

2𝜉𝑎𝑡

(𝑒𝜆𝑎𝑡
𝑘 +

1
2(𝜎𝑎𝑡

𝑘 )
2

) +
1

2(𝜎𝑎𝑡
𝑘 )

2. 

Similar to 𝝈𝒒, this is a convex optimization problem because the second derivative of ELBO on 

(𝜎𝑎𝑡
𝑘 )

2
 is negative: 

𝑑2𝐸𝐿𝐵𝑂

[𝑑(𝜎𝑎𝑡
𝑘 )

2
]

2 = −
𝑁𝑎𝑡

4𝜉𝑎𝑡

(𝑒𝜆𝑎𝑡
𝑘 +

1
2(𝜎𝑎𝑡

𝑘 )
2

) −
1

2 [(𝜎𝑎𝑡
𝑘 )

2
]

2, 

so we use the extended limited memory BFGS to update 𝝈𝒂𝒕
. 

(9) Maximize with respect to 𝝍𝒂𝒕
, t = 1: T 

𝑑𝐸𝐿𝐵𝑂

𝑑𝜓𝑎𝑡
1

= [ψ(𝜈𝑑
1) − ψ (∑ 𝜈𝑑

𝑖

2

𝑖=1

)] +
1

2
log |𝚺𝒂𝒇

−𝟏| −
𝐾

2
log 2𝜋

−
1

2
𝐸𝑢 [(𝜼𝒂𝒕

−
𝜼𝒒 + 𝛾𝜼

𝒂𝒕−𝟏

1 + 𝛾
)

𝑇

𝚺𝒂𝒇
−𝟏 (𝜼𝒂𝒕

−
𝜼𝒒 + 𝛾𝜼

𝒂𝒕−𝟏

1 + 𝛾
)] − log 𝜓𝑎𝑡

1 − 1. 

𝑑𝐸𝐿𝐵𝑂

𝑑𝜓𝑎𝑡
2

= [ψ(𝜈𝑑
2) − ψ (∑ 𝜈𝑑

𝑖

2

𝑖=1

)] +
1

2
log|𝚺𝒂𝒏

−𝟏| −
𝐾

2
log 2𝜋 −

1

2
𝐸𝑢 [(𝜼𝒂𝒕

− 𝜼𝒒)
𝑇

𝚺𝒂𝒏
−𝟏(𝜼𝒂𝒕

− 𝜼𝒒)]

− log 𝜓𝑎𝑡
2 − 1. 

Since ∑ 𝜓𝑎𝑡
𝑖2

𝑖=1 = 1, it is easy to know 𝜓𝑎𝑡
1 =

𝑒𝐶

𝑒𝐶+𝑒𝐷 , 𝜓𝑎𝑡
2 =

𝑒𝐷

𝑒𝐶+𝑒𝐷, where C = [ψ(𝜈𝑑
1) −

ψ(∑ 𝜈𝑑
𝑖2

𝑖=1 )] +
1

2
log |𝚺𝒂𝒇

−𝟏| −
1

2
𝐸𝑢 [(𝜼𝒂𝒕

−
𝜼𝒒+𝛾𝜼𝒂𝒕−𝟏

1+𝛾
)

𝑇

𝚺𝒂𝒇
−𝟏 (𝜼𝒂𝒕

−
𝜼𝒒+𝛾𝜼𝒂𝒕−𝟏

1+𝛾
)] , 𝐷 =

[ψ(𝜈𝑑
2) − ψ(∑ 𝜈𝑑

𝑖2
𝑖=1 )] +

1

2
log|𝚺𝒂𝒏

−𝟏| −
1

2
𝐸𝑢 [(𝜼𝒂𝒕

− 𝜼𝒒)
𝑇

𝚺𝒂𝒏
−𝟏(𝜼𝒂𝒕

− 𝜼𝒒)]. 

(10) Maximize with respect to 𝝂𝒅 



𝑑𝐸𝐿𝐵𝑂

𝑑𝜈𝑑
𝑖

= (𝛿𝑖 − 1) [ψ1(𝜈𝑑
𝑖 ) − ψ1 (∑ 𝜈𝑑

𝑖

2

𝑖=1

)] + ∑ 𝜓𝑎𝑡
𝑖 [ψ1(𝜈𝑑

𝑖 ) − ψ1 (∑ 𝜈𝑑
𝑖

2

𝑖=1

)]

𝑇

𝑡=1

+ [ψ(𝜈𝑑
𝑖 ) − ψ (∑ 𝜈𝑑

𝑖

2

𝑖=1

)] − [ψ(𝜈𝑑
𝑖 ) − ψ (∑ 𝜈𝑑

𝑖

2

𝑖=1

)]

− (𝜈𝑑
𝑖 − 1) [ψ1(𝜈𝑑

𝑖 ) − ψ1 (∑ 𝜈𝑑
𝑖

2

𝑖=1

)]

= (𝛿𝑖 + ∑ 𝜓𝑎𝑡
𝑖

𝑇

𝑡=1

− 𝜈𝑑
𝑖 ) [ψ1(𝜈𝑑

𝑖 ) − ψ1 (∑ 𝜈𝑑
𝑖

2

𝑖=1

)]. 

Set 
𝑑𝐸𝐿𝐵𝑂

𝑑𝜈𝑑
𝑖 = 0, as [ψ1(𝜈𝑑

𝑖 ) − ψ1(∑ 𝜈𝑑
𝑖2

𝑖=1 )] > 0 (Note ψ′ > 0, ψ′′ < 0), we obtain: 

𝜈𝑑
𝑖 = 𝛿𝑖 + ∑ 𝜓𝑎𝑡

𝑖

𝑇

𝑡=1

. 

(11) Maximize with respect to 𝝉𝒒 

𝑑𝐸𝐿𝐵𝑂

𝑑𝜏𝑞
𝑘,𝑣 = (𝜙𝑞

𝑣,𝑘 ∗ 𝑛𝑢𝑚𝑞
𝑣) [ψ1(𝜏𝑞

𝑘,𝑣) − ψ1 (∑ 𝜏𝑞
𝑘,𝑣

𝑉

𝑣=1

)] + (α𝑞
𝑣 − 1) [ψ1(𝜏𝑞

𝑘,𝑣) − ψ1 (∑ 𝜏𝑞
𝑘,𝑣

𝑉

𝑣=1

)]

+
1

𝐵(𝝉𝒒
𝒌)

𝐵(𝝉𝒒
𝒌) [ψ(𝜏𝑞

𝑘,𝑣) − ψ (∑ 𝜏𝑞
𝑘,𝑣

𝑉

𝑣=1

)] − [ψ(𝜏𝑞
𝑘,𝑣) − ψ (∑ 𝜏𝑞

𝑘,𝑣

𝑉

𝑣=1

)]

− (𝜏𝑞
𝑘,𝑣 − 1) [ψ1(𝜏𝑞

𝑘,𝑣) − ψ1 (∑ 𝜏𝑞
𝑘,𝑣

𝑉

𝑣=1

)]

= (𝜙𝑞
𝑣,𝑘 ∗ 𝑛𝑢𝑚𝑞

𝑣 + α𝑞
𝑣 − 𝜏𝑞

𝑘,𝑣) [ψ1(𝜏𝑞
𝑘,𝑣) − ψ1 (∑ 𝜏𝑞

𝑘,𝑣

𝑉

𝑣=1

)], 

where 𝑛𝑢𝑚𝑞
𝑣 is the number of word 𝑣 in document 𝑞. 



Set 
𝑑𝐸𝐿𝐵𝑂

𝑑𝜏𝑞
𝑘,𝑣 = 0, as [ψ1(𝜏𝑞

𝑘,𝑣) − ψ1(∑ 𝜏𝑞
𝑘,𝑣𝑉

𝑣=1 )] > 0 (Note ψ′ > 0, ψ′′ < 0), we obtain 𝜏𝑞
𝑘,𝑣 =

𝜙𝑞
𝑣,𝑘 ∗ 𝑛𝑢𝑚𝑞

𝑣 + α𝑞
𝑣 . (Note that 

𝑑2𝐸𝐿𝐵𝑂

𝑑𝜏𝑞
𝑘,𝑣2 = (𝜙𝑞

𝑣,𝑘 ∗ 𝑛𝑢𝑚𝑞
𝑣 + α𝑞

𝑣 − 𝜏𝑞
𝑘,𝑣)[ψ2(𝜏𝑞

𝑘,𝑣) −

ψ2(∑ 𝜏𝑞
𝑘,𝑣𝑉

𝑣=1 )] − [ψ1(𝜏𝑞
𝑘,𝑣) − ψ1(∑ 𝜏𝑞

𝑘,𝑣𝑉
𝑣=1 )] = −[ψ1(𝜏𝑞

𝑘,𝑣) − ψ1(∑ 𝜏𝑞
𝑘,𝑣𝑉

𝑣=1 )] < 0.) 

(12) Maximize with respect to 𝝉𝒂 

𝑑𝐸𝐿𝐵𝑂

𝑑𝜏𝑎
𝑘,𝑣 = ∑(𝜙𝑎𝑡

𝑣,𝑘 ∗ 𝑛𝑢𝑚𝑎𝑡
𝑣 ) [ψ1(𝜏𝑎

𝑘,𝑣) − ψ1 (∑ 𝜏𝑎
𝑘,𝑣

𝑉

𝑣=1

)]

𝑇

𝑡=1

+ (α𝑎
𝑣

− 1) [ψ1(𝜏𝑎
𝑘,𝑣) − ψ1 (∑ 𝜏𝑎

𝑘,𝑣

𝑉

𝑣=1

)] +
1

𝐵(𝝉𝒂
𝒌)

𝐵(𝝉𝒂
𝒌) [ψ(𝜏𝑎

𝑘,𝑣) − ψ (∑ 𝜏𝑎
𝑘,𝑣

𝑉

𝑣=1

)]

− [ψ(𝜏𝑎
𝑘,𝑣) − ψ (∑ 𝜏𝑎

𝑘,𝑣

𝑉

𝑣=1

)] − (𝜏𝑎
𝑘,𝑣 − 1) [ψ1(𝜏𝑎

𝑘,𝑣) − ψ1 (∑ 𝜏𝑎
𝑘,𝑣

𝑉

𝑣=1

)]

= (∑ 𝜙𝑎𝑡

𝑣,𝑘 ∗ 𝑛𝑢𝑚𝑎𝑡
𝑣

𝑇

𝑡=1

+ α𝑎
𝑣 − 𝜏𝑎

𝑘,𝑣) [ψ1(𝜏𝑎
𝑘,𝑣) − ψ1 (∑ 𝜏𝑎

𝑘,𝑣

𝑉

𝑣=1

)], 

where 𝑛𝑢𝑚𝑎𝑡
𝑣  is the number of word 𝑣 in document 𝑎𝑡. 

Set 
𝑑𝐸𝐿𝐵𝑂

𝑑𝜏𝑎
𝑘,𝑣 = 0, we obtain 𝜏𝑎

𝑘,𝑣 = ∑ 𝜙𝑎𝑡

𝑣,𝑘 ∗ 𝑛𝑢𝑚𝑎𝑡
𝑣𝑇

𝑡=1 + α𝑎
𝑣 . 

If there are multiple Q&A documents, the updating formulas of 𝝉𝒒 and 𝝉𝒂 are as follows: 

𝜏𝑞
𝑘,𝑣 = ∑ 𝜙𝑑,𝑞

𝑣,𝑘 ∗ 𝑛𝑢𝑚𝑑,𝑞
𝑣

𝐷

𝑑=1

+ α𝑞
𝑣 , 

𝜏𝑎
𝑘,𝑣 = ∑ ∑ 𝜙𝑑,𝑎𝑡

𝑣,𝑘 ∗ 𝑛𝑢𝑚𝑑,𝑎𝑡

𝑣

𝑇

𝑡=1

𝐷

𝑑=1

+ α𝑎
𝑣 . 

B.3. A Variant of TM-OKC (one 𝜷) 

As we illustrate in Section 3.2 and Figure 1 of the main paper, our topic modeling framework 

TM-OKC allows questions and answers to have different topic-word distributions 𝜷𝒒 and 𝜷𝒂. 



This is because the same topic in questions and answers can be expressed by different words. For 

example, in online news and comments, news is written by reporters while comments are made 

by the general public. For the same topic, words used in news can be more formal than those in 

comments. Therefore, we use different 𝜷𝒒 and 𝜷𝒂 to make the main framework as generalizable 

as possible. This setting is also seen in prior research (Ji et al. 2012). Note that if the texts are not 

observed, 𝜷𝒒 and 𝜷𝒂 are independent from each other. However, during the model inference, 

conditioned on the observed texts (i.e., 𝒘𝒒 and 𝒘𝒂𝒕
), 𝜷𝒒 and 𝜷𝒂 are dependent due to the “v-

structures” among parameters: “𝒛𝒒 → 𝒘𝒒 ← 𝜷𝒒” and “𝒛𝒂𝒕
→ 𝒘𝒂𝒕

← 𝜷𝒂” (Jordan 2003). Thus, 

𝜷𝒒 and 𝜷𝒂 need to be jointly optimized to ensure their comparability. All the derivation of 

variational inference in Sections B.1 and B.2 of Web Appendix B is based on this general 

framework. 

However, it should be noted that it makes more sense to adopt the same topic-word 

distribution for questions and answers in certain contexts (e.g., professional Q&A). Thus, we 

have intentionally created a variant with only one 𝜷 (i.e., 𝜷𝒒 = 𝜷𝒂). The graphical representation 

is shown in Figure B1. 

 

Figure B1: Graphical representation of the variant with one 𝜷. 

 



The model derivation can be obtained straightforwardly by revising the derivations in 

Sections B.1 and B.2 as follows. 

(1) Substitute all 𝜷𝒒 and 𝜷𝒂 in the derivations with the same 𝜷. And substitute the prior 

parameter of 𝜷𝒒 and 𝜷𝒂 (i.e., 𝜶𝒒 and 𝜶𝒂) with the same 𝜶. 

(2) Substitute all 𝝉𝒒 and 𝝉𝒂 with the same 𝝉. Recall that 𝝉 is the parameter of the variational 

distribution of 𝜷. 

(3) Substitute the derivation of 𝝉𝒒 and 𝝉𝒂 in (11) and (12) in Section B.2 with the same 

derivation for 𝝉 as follows. 

𝑑𝐸𝐿𝐵𝑂

𝑑𝜏𝑞
𝑘,𝑣 = (𝜙𝑞

𝑣,𝑘 ∗ 𝑛𝑢𝑚𝑞
𝑣 + ∑ 𝜙𝑎𝑡

𝑣,𝑘 ∗ 𝑛𝑢𝑚𝑎𝑡
𝑣

𝑇

𝑡=1

) [ψ1(𝜏𝑘,𝑣) − ψ1 (∑ 𝜏𝑘,𝑣

𝑉

𝑣=1

)]

+ (𝛼𝑣 − 1) [ψ1(𝜏𝑘,𝑣) − ψ1 (∑ 𝜏𝑘,𝑣

𝑉

𝑣=1

)]

+
1

𝐵(𝝉𝒒
𝒌)

𝐵(𝝉𝒒
𝒌) [ψ(𝜏𝑘,𝑣) − ψ (∑ 𝜏𝑘,𝑣

𝑉

𝑣=1

)] − [ψ(𝜏𝑘,𝑣) − ψ (∑ 𝜏𝑘,𝑣

𝑉

𝑣=1

)]

− (𝜏𝑘,𝑣 − 1) [ψ1(𝜏𝑘,𝑣) − ψ1 (∑ 𝜏𝑘,𝑣

𝑉

𝑣=1

)]

= (𝜙𝑞
𝑣,𝑘 ∗ 𝑛𝑢𝑚𝑞

𝑣 + ∑ 𝜙𝑎𝑡

𝑣,𝑘 ∗ 𝑛𝑢𝑚𝑎𝑡
𝑣

𝑇

𝑡=1

+ 𝛼𝑣 − 𝜏𝑘,𝑣) [ψ1(𝜏𝑘,𝑣)

− ψ1 (∑ 𝜏𝑘,𝑣

𝑉

𝑣=1

)]. 

where 𝑛𝑢𝑚𝑞
𝑣 is the number of word 𝑣 in document 𝑞, and 𝑛𝑢𝑚𝑎𝑡

𝑣  is the number of word 𝑣 in 

document 𝑎𝑡. 



Set 
𝑑𝐸𝐿𝐵𝑂

𝑑𝜏𝑘,𝑣 = 0, as [ψ1(𝜏𝑘,𝑣) − ψ1(∑ 𝜏𝑘,𝑣𝑉
𝑣=1 )] > 0 (Note ψ′ > 0, ψ′′ < 0), we obtain the 

updating formula of 𝝉 as follows: 

𝜏𝑘,𝑣 = 𝜙𝑞
𝑣,𝑘 ∗ 𝑛𝑢𝑚𝑞

𝑣 + ∑ 𝜙𝑎𝑡

𝑣,𝑘 ∗ 𝑛𝑢𝑚𝑎𝑡
𝑣

𝑇

𝑡=1

+ 𝛼𝑣. 

If there are multiple Q&A documents, the updating formula of 𝜏 is as follows: 

𝜏𝑘,𝑣 = ∑ 𝜙𝑑,𝑞
𝑣,𝑘 ∗ 𝑛𝑢𝑚𝑑,𝑞

𝑣

𝐷

𝑑=1

+ ∑ ∑ 𝜙𝑑,𝑎𝑡

𝑣,𝑘 ∗ 𝑛𝑢𝑚𝑑,𝑎𝑡

𝑣

𝑇

𝑡=1

𝐷

𝑑=1

+ 𝛼𝑣. 

B.4. Explanation of “Dependency and Variation” 

Our framework is flexible in modeling the explicit structural relations by capturing both the 

dependency and variation within the Q&A thread. “Dependency” means that the topics of the 

current answer depend on the question and may also on prior answers, and “variation” means 

that users can focus on new topics that may not be saliently mentioned in the question or prior 

answers. 

The mathematical details of the model structure are presented Section 3.2 of the main 

paper. Note that “dependent on” does not suggest “equal to” in the model. For example, for a 

novel answer, we draw the topic distribution 𝜽𝒂𝒕
 from a logistic-normal distribution as follows: 

𝜼𝒂𝒕
~𝑁(𝜼𝒒, 𝚺𝒂𝒏

), 

𝜽𝒂𝒕
=

𝑒𝑥𝑝 {𝜼𝒂𝒕
}

∑ 𝑒𝑥𝑝 {휂𝑎𝑡
𝑘 }𝐾

𝑘=1

. 

On the one hand, the mean parameter of this logistic-normal distribution is 𝜼𝒒 (the 

natural parameterization of the question’s topic distribution 𝜽𝑞), reflecting the dependency on 

the question. On the other hand, the variance-covariance matrix 𝚺𝒂𝒏
 reflects the variation. This is 

why the answer depends on the question while there are differences between the topic 



distributions of the question and its answer. It can be analogous to the familiar linear regression, 

y =  𝛽 ∙ 𝑥 + 휀, 휀~𝑁(0, 𝜎). This regression is equivalent to 𝑦~𝑁(𝛽 ∙ 𝑥, 𝜎), where y depends on 

𝛽 ∙ 𝑥 but is not equal to 𝛽 ∙ 𝑥 because there is the variation parameter 𝜎 to capture the 

“fluctuation” around 𝛽 ∙ 𝑥. 

The rationale behind this “dependency and variation” structure is quite straightforward, 

because users usually read questions before providing their answers. Some answers may be 

highly correlated with the question, while others may be less or barely correlated with the 

question. Such a variation is captured by the 𝚺𝒂𝒏
. Intuitively, we can think that the topic 

distribution of a novel answer varies or fluctuates around the topic distribution of its question. 
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Web Appendix C: Hyper-Parameter Settings and Computational Resources 

(1) Hyper-Parameter Settings 

In the experiments of evaluating the statistical model fit, we set the common hyper-parameters to be 

the same for fair comparison. For other hyper-parameters that are specific to each method, we follow 

recommendations from the original papers, as well as performing a grid search to find relatively 

optimal settings. Specifically, the hyper-parameters of our TM-OKC and other topic models are set 

as follows. 

• Number of topics. For all topic models, we adopt a widely used approach to select the optimal 

number of topics from a set of predefined numbers (i.e., 5, 10, 20, 40 and 80). That is, we train 

the model on the training set, choose the number of topics based on the log-likelihood on the 

validation set, and finally report the performance on the holdout test set (Griffiths and Steyvers 

2004; Roberts et al. 2019; Bapna et al. 2019). 

• Stopping criteria. All these methods optimize the model by iteratively improving the log-

likelihood. We use the same stopping criteria in training, e.g., the log-likelihood between two 

consecutive iterations is less than a pre-defined threshold (i.e., 1e-5). 

• Prior distribution. For the hyper-parameters of the prior Dirichlet and Beta distributions (i.e., 𝛼 

and 𝛿 in our model) in the topic models, we follow prior literature and set them to 0.1 (Griffiths 

and Steyvers 2004). We also perform a grid search over the range of [0.01, 1] and the results are 

similar. 

• Other hyper-parameters specific to some methods. For the topic models combined with deep 

language models (i.e., NTM and SCHOLAR), we perform a grid search for the dimension of 

hidden embedding (the original papers of NTM and SCHOLAR both recommended 300) over the 

set of [50, 150, 300, 450, 600], for the learning rate during training (the original paper of NTM 

and SCHOLAR recommended 0.001 and 0.002, respectively) over the set of [0.01, 0.002, 0.001, 



0.0005, 0.0001], and for the batch size during training (the original paper of NTM and 

SCHOLAR recommended 512 and 200, respectively) over the set of [32, 128, 200, 512, 1024]. 

For LeadLDA, since it uses Gibbs sampling for model inference, we perform a grid search over 

the set of [500, 1000, 2000] for the maximum number of iterations and the results are similar. 

In the experiments of document classification in the additional evaluation presented in Web 

Appendix F, we need to specify the hyper-parameters for the random forest algorithm where we feed 

the document-level topic vectors into a random forest model to predict the category of each 

document. Specifically, we perform a grid search over the set of [50, 100, 200, 300, 500] for the 

number of estimators, and over the set of [2, 4, 6, 8, 12, None] for the maximum depth of the 

decision trees. In addition, we follow the default settings of the scikit-learn package in Python for 

other hyper-parameters of the random forest algorithm. 

(2) Computational Resources 

All the experiments of are conducted on a machine with an Intel 8-core i9 CPU with 64GB of RAM. 

In our Stack Exchange datasets, the largest one is the category of “English Language & Usage” with 

109,977 questions and 268,356 answers, which took approximately 23 hours to finish training our 

TM-OKC; the smallest one is the category of “Project Management” with 5,782 questions and 

17,724 answers, which took approximately 0.7 hours to finish training our TM-OKC. Note that since 

we use EM algorithm, the most time-consuming part is the E-step, which can be parallelized with 

multiple processes to further reduce the run time. 
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Web Appendix D: Perplexity Scores for Other Categories 

To show robustness of the model fit, we pictorially show the perplexity scores for each method 

(ours and the baselines) under different numbers of topics (i.e., 5, 10, 20, 40 and 80) on the 

holdout data. 

  
(a) Category: English Language & Usage                     (b) Category: Cooking 

  
(c) Category: Computer Science                             (d) Category: Writing 

 
(e) Category: Project Management 

Figure D1: Perplexity for other categories within Stack Exchange. 

 



Figure D1 shows the comparison of different models for categories within Stack 

Exchange other than Data Science, which is shown in the main paper. Figure D2 shows the 

comparison of different models for categories within Quora other than Business and Marketing. 

 
(a) Category: Science and Technology                 (b) Category: Health and Life 

Figure D2: Perplexity for other categories within Quora. 

  



Web Appendix E: Examination of Important Parameters in the TM-OKC 

The TM-OKC models the interdependency of a question and its answers as well as the temporal 

variation of threaded answers in its Bayesian framework, which is significantly different from 

prior studies. For example, the TM-OKC allows differential impacts of the question and of prior 

answers on the current answer by incorporating the parameter 𝛾. The TM-OKC also captures the 

variances of topic distributions for questions and answers, denoted by 𝚺𝑞, 𝚺𝒂𝒇
 and 𝚺𝒂𝒏

, 

respectively. Larger 𝛾 indicates that answers are more easily affected by prior answers. Larger 

𝚺𝑞 indicates more variation in the topics of questions, while larger 𝚺𝒂𝒇
 or 𝚺𝒂𝒏

 means that the 

topic distribution of follow-up or novel answers is more likely to fluctuate. These unique 

parameters in our model can reflect important structural information of OKC texts, which can 

potentially be used in subsequent empirical studies to generate new insights. 

Table E1 shows values of 𝛾 learned from the Stack Exchange dataset, upon which we 

make the following observations. First, the values of 𝛾 are larger for the “soft skill” categories 

(i.e., Project Management, Writing, English Language & Usage and Cooking) compared to the 

“hard skill” categories (i.e., Data Science, Computer Science), suggesting that answers in soft 

skill categories are more likely to be affected by previous answers. This is expected because 

answers to questions in the soft skill categories are more flexible. Second, the values of 𝛾 for the 

categories of Data Science and Computer Science are less than 1 while the values for the other 

four categories are greater than 1, which indicates that topics of follow-up answers in these four 

categories might be dominated by the previous answers but not the original question. Table E2 

shows values of 𝛾 learned from the Quora dataset, which are much higher than the values learned 

from the Stack Exchange dataset in general. This might be because Stack Exchange is a 

professional Q&A site while Quora is more like a social media platform, so the users of Stack 



Exchange will focus more on answering the questions rather than on joining previous 

discussions. 

Table E1: The learned 𝜸 under different models across categories of Stack Exchange. 

Model 

Technology 

(Data 

Science) 

Culture/ 

Recreation 

(English 

Language 

& Usage) 

Life/Arts 

(Cooking) 

Science 

(Computer 

Science) 

Professional 

(Writing) 

Business 

(Project 

Management) 

TM-

OKC 

(mean) 

0.38 2.72 2.59 0.89 2.68 2.65 

TM-

OKC 

(decay) 

0.36 2.45 2.58 0.87 9.76 2.51 

TM-

OKC 

(weight) 

0.72 2.66 1.90 0.77 2.04 2.08 

 

Table E2: The learned 𝜸 under different models across categories of Quora. 

Model Science and Technology Business and Marketing Health and Life 

TM-OKC 

(mean) 
2.50 3.59 3.84 

TM-OKC 

(decay) 
2.31 3.75 3.98 

TM-OKC 

(weight) 
2.20 3.81 3.73 

 

Table E3 summarizes the variances reflected by 𝚺𝒂𝒇
 and 𝚺𝒂𝒏

1 learned from the Stack 

Exchange dataset, upon which we can make several notable observations. First, in the categories 

of Data Science and Computer Science, 𝛾 is smaller but 𝚺𝒂𝒇
 and 𝚺𝒂𝒏

 are larger. One possible 

explanation is that, in these two hard skill categories, users need to raise distinct topics to address 

hardcore technical issues. Therefore, users are more likely to adjust the focus of the discussion, 

driven by their intention to provide professional answers rather than participating for fun. 

 
1 We calculate the trace of the variance-covariance matrix divided by the dimension in order to measure the average 

variance of topic distribution per dimension. 



Second, in the two hard skill categories, 𝚺𝒂𝒇
 is larger than 𝚺𝒂𝒏

, indicating greater fluctuation in 

follow-up answers than novel answers. This might be because a novel answer tends to address 

the technical question directly and thus would not deviate much, while a follow-up answer may 

deviate from the previous discussions due to the user’s own interests. However, in the categories 

of English Language & Usage and Cooking, 𝚺𝒂𝒇
 can be smaller than 𝚺𝒂𝒏

 because the follow-up 

discussions in these categories are more like daily chat and thus do not fluctuate much. In 

addition, Table E4 summarizes the variance parameters learned from the Quora dataset. We can 

see that the heterogeneity among different Quora categories is not very significant compared to 

Stack Exchange, which shows the different styles of these two Q&A platforms. 

Table E3: The variances of topic distribution by different models across Stack Exchange 

categories. 

 

Model 

Technology 

(Data 

Science) 

Culture/ 

Recreation 

(English 

Language 

& Usage) 

Life/Arts 

(Cooking) 

Science 

(Computer 

Science) 

Professional 

(Writing) 

Business 

(Project 

Management) 

𝚺𝒂𝒇
 

TM-

OKC 

(mean) 

5.96 0.46 0.48 4.12 1.72 0.49 

TM-

OKC 

(decay) 

3.86 0.49 0.48 4.51 1.63 0.49 

TM-

OKC 

(weight) 

3.52 0.52 0.53 7.33 0.50 0.51 

𝚺𝒂𝒏
 

TM-

OKC 

(mean) 

1.17 0.74 0.82 1.27 0.59 0.73 

TM-

OKC 

(decay) 

2.32 0.78 0.81 1.27 0.60 0.74 

TM-

OKC 

(weight) 

1.14 0.74 0.82 1.26 0.71 0.73 

 

  



Table E4: The variances of topic distribution by different models across Quora categories. 

 Model Science and Technology Business and Marketing Health and Life 

𝚺𝒂𝒇
 

TM-OKC 

(mean) 
0.60 0.61 0.57 

TM-OKC 

(decay) 
0.61 0.59 0.56 

TM-OKC 

(weight) 
0.63 0.57 0.59 

𝚺𝒂𝒏
 

TM-OKC 

(mean) 
0.98 1.08 1.04 

TM-OKC 

(decay) 
1.01 1.06 1.01 

TM-OKC 

(weight) 
1.03 1.05 1.06 

 

  



Web Appendix F: Additional Evaluation of the TM-OKC 

In this Appendix, we present the details about the additional evaluation of our TM-OKC in terms 

of representation capability and interpretability. 

F.1. Representation Capability 

We use a prediction task of document classification to demonstrate the representation capability 

among different methods; this has been used by previous studies to evaluate the effectiveness of 

topic models (Zeng et al. 2019; Yang et al. 2022). Specifically, the prediction task is formalized 

in three steps. (1) Sample 2,000 questions and their answers from each of the six categories in 

our Stack Exchange dataset (or sample 1,000 questions and their answers from each of the three 

categories within our Quora dataset), then combine them to form a dataset for document 

classification, where the category is the label in this supervised classification task. (2) Apply 

topic models on the combined dataset to obtain a topic vector for each document. (3) Feed the 

learned topic vector to a classifier (i.e., random forest) to predict the document category. 

Baselines: To validate the effectiveness of our method, we choose three sets of baselines to 

obtain document representations (i.e., step 2 as described above). 

⚫ Topic models. We use all benchmark topic models listed in Section 5 (i.e., LDA, NTM, TRTM, 

STM, SCHOLAR, QATM, LeadLDA and SITS). 

⚫ Basic textual feature extraction methods. We employ the commonly used term frequency–

inverse document frequency (TF-IDF) method with the top W (W=100, 500 or 1,000) words 

in the corpus to represent each document. 

⚫ Representation learning methods. First, we choose bi-directional long-short term memory 

(Bi-LSTM), given its success in many document classification tasks (Adhikari et al. 2019). 

Second, we choose the transformer-based BERT, an advanced large language model (Devlin 



et al. 2019). To make a comprehensive comparison, we use both pre-trained and fine-tuned 

BERT2. Note that although they may have strong prediction power, the representation 

learning methods are not able to produce interpretable results (e.g., topics). While our study 

focuses on unsupervised topic modeling that can extract interpretable topics from texts, we 

still include these cutting-edge representation learning methods for comparison to show the 

representative capability of TM-OKC. 

Evaluation Metrics: Since this is a standard multi-class classification task and the datasets are 

balanced, we use the standard classification accuracy (i.e., the percentage of correctly classified 

instances) as the evaluation metric. We repeat the experiments 30 times and report the average 

performance. 

The prediction results are presented in Table F1. For topic modeling methods, we vary 

the number of topics to show robustness. From the table, we make the following observations. 

First, our model achieves the best prediction performance among all topic modeling methods 

across different numbers of topics. Second, all topic modeling methods other than LDA show 

better performance than the basic TF-IDF feature extraction method. Third, using the topic 

vectors derived from our topic model as the input to a simple machine learning classifier (i.e., 

random forest) can achieve even better performance than Bi-LSTM and comparable performance 

with the fine-tuned BERT. These results highlight the fact that topic models can be used to 

represent semantics of texts, and compared to existing topic modeling methods, our model has 

stronger representation capability on OKC texts. 

  

 
2 For pre-trained BERT, we obtain the document vector (e.g., associated with the CLS token) as input and feed it to a 

classifier (i.e., random forest) to predict the document label; for Bi-LSTM and fine-tuned BERT, models are tuned 

using labeled supervision under the document classification task. 



Table F1: Prediction accuracy of different methods on two modified datasets. 

  Stack Exchange Quora 
 Number of topics 40 80 120 40 80 120 

Basic text feature 

extraction methods 

TF-IDF features 

(top 100 words) 
 0.517   0.600  

TF-IDF features 

(top 500 words) 
 0.717   0.779  

TF-IDF features 

(top 1000 words) 
 0.718   0.804  

Bayesian topic 

modeling methods 

LDA 0.727 0.710 0.699 0.728 0.726 0.712 

TRTM 0.891 0.885 0.893 0.935 0.920 0.937 

STM 0.886 0.847 0.888 0.935 0.935 0.930 

QATM 0.898 0.853 0.860 0.960 0.962 0.937 

LeadLDA1 0.867 0.832 0.751 0.762 0.749 0.747 

LeadLDA2 0.865 0.865 0.749 0.796 0.762 0.737 

SITS 0.903 0.891 0.868 0.881 0.893 0.876 

Topic modeling 

combined with deep 

language models 

NTM 0.905 0.900 0.859 0.813 0.827 0.848 

SCHOLAR 0.901 0.903 0.885 0.826 0.855 0.818 

Representation 

learning methods 

Bi-LSTM  0.822   0.919  

Pre-trained BERT  0.696   0.722  

Fine-tuned BERT  0.936   0.992  

Our method TM-OKC 0.911* 0.933*** 0.918*** 0.983** 0.990*** 0.968*** 

Note that the statistical significance is calculated compared with the best topic modeling method under a 

one-tailed t-test. * p < 0.05, ** p < 0.01, *** p < 0.001. 

 

F.2. Interpretability 

We now turn to investigating the interpretability of the generated topics. One intuitive way to do 

this is by evaluating face validity, where we show the top 10 words for several topics of our 

model and the best baseline model (please refer to Web Appendix G). To further explore the 

interpretability in a more rigorous way, we follow previous research (Chang et al. 2009; Bao and 

Datta 2014; Palese and Piccoli 2020) and conduct word intrusion and topic intrusion through lab 

studies. The detailed procedures are described below. 

The word intrusion task is used to quantitatively measure the semantic coherence of the 

identified topics. Specifically, the subject is presented with six randomly ordered words. The task 



of the subject is to find the one word (i.e., the intruder) that is out of place or not in line with the 

others. If the set of words excluding the intruder makes sense together, then the subject can 

easily identify the intruder. For example, in the set {elephant, tiger, horse, apple, pig, cow}, most 

people can identify “apple” as the intruder because the remaining words, {elephant, tiger, horse, 

pig, cow} are coherent – they are all animals. In contrast, for another set {car, teacher, lion, agile, 

blue, square} that lacks such semantic coherence, it is difficult to identify the intruder. In order 

to evaluate the semantic coherence of a topic, we first select the five most probable words of a 

topic. Then, an intruder word is randomly selected from those words with low probabilities in the 

current topic (to reduce the possibility of the intruder coming from the same semantic group) but 

high probabilities in some other topics (to ensure that the intruder would not be rejected solely 

because of rarity). Finally, all six words are shuffled and presented to the subject like in Figure 

F1-(a). The evaluation metric for such a word intrusion task is the model precision, which is 

defined as the fraction of subjects agreeing with the topic model. Specifically, the word intrusion 

precision of the k-th topic learned by model m is defined as: 

𝑊𝐼𝑃𝑚
𝑘 =

1

𝑆
∑ 𝟏(𝑖𝑘,𝑠

𝑚 = 𝑤𝑘
𝑚)

𝑆

𝑠=1

, 

where 𝑤𝑘
𝑚 is the true intruding word among the set of words generated from the k-th topic 

learned by model m, 𝑖𝑘,𝑠
𝑚  is the intruder selected by subject s from the set of words generated 

from the k-th topic learned by model m, S is the number of subjects, and 𝟏(·) is the indicator 

function. Finally, the precision of model m (i.e., 𝑊𝐼𝑃𝑚) is obtained by taking the average of 

𝑊𝐼𝑃𝑚
𝑘 over topics. 



 
(a) Word intrusion                                         (b) Topic intrusion  

Figure F1: Screenshots of the lab studies for word intrusion and topic intrusion. 

 

The topic intrusion task measures whether the model’s document decomposition, in 

which a document is broken down into a mixture of topics, is consistent with human judgment of 

the same document. In this task, human subjects are presented with a document along with four 

topics (with each topic represented by the eight words with highest probabilities within that 

topic), as in Figure F1-(b). Three of those topics are those with the highest probabilities 

associated with that document. The remaining intruder topic is randomly chosen from other 

topics with low probabilities. The evaluation metric for topic intrusion task is topic log odds, a 

quantitative measure of the agreement between the model and human judgment. Specifically, the 

measure is defined as the log ratio of the probability assigned to the true intruder to the 

probability assigned to the intruder selected by the subject: 

𝑇𝐿𝑂𝑚
𝑑 =

1

𝑆
∑ (log 휃̂𝑑,𝑡𝑑

𝑚
𝑚 − log 휃̂𝑑,𝑗𝑑,𝑠

𝑚
𝑚 )

𝑆

𝑠=1

, 

where 𝑡𝑑
𝑚 is the true intruder topic among those with highest probabilities of document d inferred 

by model m, 𝑗𝑑,𝑠
𝑚  is the intruder topic selected by subject s from the topics with highest 

probabilities of document d inferred by model m, 휃̂𝑑,𝑘
𝑚  is the probability assigned to topic k in 

document d inferred by model m, and S is the number of subjects. Finally, the overall measure 



for model m (i.e., 𝑇𝐿𝑂𝑚) is obtained by taking the average of 𝑇𝐿𝑂𝑚
𝑑  over documents. A larger 

value of 𝑇𝐿𝑂𝑚 indicates a greater agreement between the judgment of the model and the 

subjects. We can see that the upper bound of 𝑇𝐿𝑂𝑚 is 0, which can only be achieved when all 

subjects pick out the true intruder topics for all documents. 

Table F2: Human evaluation results of word intrusion and topic intrusion tasks. 

 𝑊𝐼𝑃𝑚 in word intrusion 𝑇𝐿𝑂𝑚 in topic intrusion 

Number of 

topics 
40 80 120 40 80 120 

LDA 0.806 0.794 0.788 -1.61 -1.65 -1.85 

NTM 0.825 0.813 0.819 -1.52 -1.47 -1.48 

TRTM 0.813 0.838 0.806 -1.43 -1.35 -1.49 

STM 0.819 0.825 0.819 -1.37 -1.25 -1.47 

SCHOLAR 0.813 0.819 0.813 -1.36 -1.30 -1.51 

QATM 0.825 0.831 0.813 -1.31 -1.22 -1.39 

SITS 0.819 0.825 0.800 -1.32 -1.29 -1.38 

LeadLDA1 0.813 0.806 0.800 - - - 

LeadLDA2 0.819 0.813 0.794 - - - 

TM-OKC 0.856** 0.869** 0.838* -1.12** -0.96*** -1.23** 

Note: (1) The statistical significance is calculated compared with the best topic modeling method under a 

one-tailed t-test. * p < 0.05, ** p < 0.01, *** p < 0.001; (2) As LeadLDA only assigns one single topic to 

each post, the 𝑇𝐿𝑂𝑚 cannot be calculated and thus LeadLDA is excluded in the topic intrusion task. 

 

Using the same two modified datasets introduced in Section F.1, we conduct the two 

tasks separately on our model and the baseline topic models (i.e., LDA, NTM, TRTM, STM, 

SCHOLAR, QATM, LeadLDA and SITS). For the word intrusion task, we evaluate the top 10 

topics generated by each topic model on two datasets across different numbers of topics (i.e., 40, 

80 and 120). For the topic intrusion task, we randomly sample 60 posts from the corpus and 

evaluate the performance for each topic model across different numbers of topics. To carry out 

these tasks with human subjects, we use the popular crowdsourcing platform Amazon 

Mechanical Turk and present each subject with 10 word intrusion or 20 topic intrusion tasks. For 

the sake of robustness, we ensure each task is performed by eight different workers (Chang et al. 



2009). The results are shown in Table F2. From the table, we find that our model achieves 

significantly better human evaluation performance. 
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Web Appendix G: Face Validity of Generated Topics 

To provide the face validity of generated topics, we show the top 10 words with highest 

probabilities in the top 10 topics of our model and of the best baseline model. 

For the modified Stack Exchange dataset, we choose NTM as the baseline, and we report 

the results of our model and NTM with 40 topics in Table G1 and Table G2. This is because 

NTM achieves the best prediction performance among the topic model baselines in the document 

classification task in Section F.1, with 40 topics. As shown in Table G1 and G2, Topic 7 and 

Topic 8 learned by NTM are both about “model” and are not very distinguishable, while the 

topic about “model” is well captured in one single topic (i.e., Topic 4) of TM-OKC. 

Table G1: Top 10 topics learned by TM-OKC on the Stack Exchange dataset.  

Topic Most probable words 

1 quot, charact, stori, write, reader, word, think, thing, way, peopl 

2 cook, food, water, time, heat, temperatur, pan, oil, get, meat 

3 team, product, work, sprint, scrum, stori, develop, agil, user, backlog 

4 model, data, train, test, featur, valu, predict, class, learn, set 

5 project, manag, need, work, risk, cost, time, peopl, develop, requir 

6 recip, flour, bake, dough, egg, sugar, bread, milk, tast, flavor 

7 problem, number, algorithm, time, sum, log, function, frac, comput, solv 

8 languag, state, word, quot, type, machin, context, mean, accept, definit 

9 tree, node, graph, element, edg, array, vertex, algorithm, path, number 

10 task, time, work, day, project, hour, resourc, date, start, schedul 

 

Table G2: Top 10 topics learned by NTM on the Stack Exchange dataset.  

Topic Most probable words 

1 team, project, work, scrum, sprint, time, task, need, product, process 

2 cook, water, add, time, food, pan, oil, flour, good, need 

3 character, reader, write, think, want, know, thing, way, need, good 

4 quot, word, english, mean, phrase, verb, say, noun, think, know 

5 problem, number, algorithm, time, set, sum, give, function, log, find 

6 write, book, work, good, read, want, find, publish, page, author 

7 model, time, algorithm, problem, need, good, way, number, case, set 

8 model, train, test, class, quot, dataset, layer, input, set, loss 

9 work, time, need, know, way, good, want, find, question, write 

10 time, work, need, know, way, good, want, find, question, quot 



For the Quora dataset, we report the results of our model and QATM with 80 topics in 

Table G3 and Table G4. This is because QATM achieves the best prediction performance among 

the topic model baselines in the document classification task of Section F.1, with 80 topics. It 

can be seen that the topic about “code and software” spreads in three topics (Topic 2, 5 and 10) 

in QATM, while this topic is well captured in one single topic (i.e., Topic 3) in TM-OKC. 

Table G3: Top 10 topics learned by TM-OKC on the Quora dataset. 

Topic Most probable words 

1 time, life, peopl, get, think, good, know, thing, even, day 

2 
bitcoin, invest, market, cryptocurr, crypto, buy, coin, trade, money, 

ethereum 

3 softwar, engin, work, code, develop, program, test, problem, need, job 

4 peopl, thing, question, find, need, ask, want, know, answer, think 

5 wear, look, woman, cloth, dress, shirt, style, girl, jean, fashion 

6 cost, pay, countri, govern, increas, rate, inflat, high, economi, tax 

7 
god, human, differ, truth, philosophi, religion, world, analysi, exist, 

purpos 

8 content, medium, websit, seo, blog, social, search, googl, page, post 

9 busi, product, brand, custom, start, onlin, digit, servic, company, plan 

10 weight, eat, lose, exercis, food, calori, diet, bodi, healthi, day 

 

Table G4: Top 10 topics learned by QATM on the Quora dataset. 

Topic Most probable words 

1 
bitcoin, invest, cryptocurr, crypto, ethereum, buy, market, blockchain, 

transact, time 

2 time, work, softwar, know, need, way, code, someth, develop, think 

3 wear, look, dress, tri, get, cloth, string, time, good, love 

4 god, energi, human, object, exist, say, time, peopl, medit, self 

5 
engin, code, program, comput, softwar, problem, languag, time, write, 

thing 

6 develop, applic, busi, compani, get, work, start, need, peopl, idea 

7 unit, peopl, implement, test, chang, mani, function, may, thing, engin 

8 project, request, screen, video, get, creat, need, want, experi, manag 

9 work, system, way, program, task, time, need, weight, get, lose 

10 code, test, softwar, interview, engin, question, skill, manag, work, ask 

 

From these tables, we can see that in comparison to the best benchmark, the topics 

learned by our TM-OKC model are more coherent and distinguishable, providing a face validity 

of its effectiveness in modeling interdependencies among questions and answers in OKCs.  



Web Appendix H: Logic and Additional Evaluation of User Profiling 

(1) Logic of the User Profiling Example 

As illustrated in Figure 3 of the main paper, with better statistical model fit, representation 

capability and interpretability, our TM-OKC can benefit many downstream tasks, which can be 

user-related (e.g., user profiling) or not user-related (e.g., trending topic detection). In our study, 

user profiling is selected as an example to demonstrate the practical utility and relative merit of 

TM-OKC. 

As elaborated in Section 2 of the main paper, our study aims to developing a general 

topic modeling framework that explicitly captures the complex structural relationships among 

OKC texts, thus we do not model the observed attributes of texts (e.g., authorship information) 

which is beyond our research focus. Note that although this user profiling example happens to be 

user-related, it does not mean we have to model authorship a priori. This is because the key of 

topic models is to obtain good text representation (i.e., topic vectors), and this modeling process 

does not necessarily include authorship information. After deriving topic vectors from texts, 

different downstream tasks can use these topic vectors in their own ways. For example, here in 

this study, we use topic vectors to construct user profiles. This procedure actually incorporates 

authorship information a posteriori. Other topic models that capture authorship a priori follow 

the same procedure. However, this is just a downstream task, which does not impose restrictions 

on whether the topic model should include authorship information a priori. This is also reflected 

in prior research. For example, LDA, which does not model authorship information, has also 

been applied to construct Twitter users’ online profiles (Geva et al. 2019). In addition, although 

modeling authorship is beyond our research scope, we still compared our method with the state-

of-the-art baseline methods that model authorship and achieved significantly better performance, 



through which we have empirically demonstrated the importance of modeling explicit structural 

relationships among OKC texts and made our methodological contributions in this regard. It is 

worth noting that adding authorship into our framework might be able to further improve the 

model performance, which we leave for future research. 

(2) Additional Evaluation 

In the user profiling experiments in Section 6 of the main paper, we follow the strategy used in 

prior studies to perform a similarity search in a 100-question pool randomly selected from the 

hold-out test set (Elkahky et al. 2015; He et al. 2017). Here we also present the results using the 

whole hold-out test set as the question pool to perform the similarity search in Tables H1 and H2. 

  



Table H1: User profiling performance comparison of different methods under a moderate 

data size (number of Q&A threads is 8,000). 

 Hit rate for top K 
 K=5 K=10 K=20 

Basic text feature 

extraction methods 

TF-IDF features 

(top 100 words) 
0.17% 0.34% 0.63% 

TF-IDF features 

(top 500 words) 
0.15% 0.26% 0.52% 

TF-IDF features 

(top 1000 words) 
0.17% 0.27% 0.63% 

Bayesian topic 

modeling methods 

LDA 0.83% 1.92% 3.95% 

TRTM 0.95% 2.11% 4.03% 

STM 1.02% 2.30% 4.23% 

QATM 1.07% 2.19% 4.11% 

LeadLDA1 0.17% 0.31% 0.63% 

LeadLDA2 0.19% 0.37% 0.78% 

SITS 1.16% 2.29% 4.23% 

Pre-trained deep 

language models 
Pre-trained BERT 0.48% 0.84% 1.45% 

Topic modeling 

combined with deep 

language models 

NTM 0.79% 1.90% 3.39% 

SCHOLAR 0.91% 1.98% 4.08% 

Neural matrix 

factorization 
NMF 0.88% 1.83% 3.90% 

Our method TM-OKC 1.28%** 2.55%** 4.58%** 

Note that the statistical significance is calculated compared with the best baseline method under a one-

tailed t-test. ** p < 0.05, *** p < 0.01. 

 

 

Not surprisingly, the results presented in Tables H1 and H2 are consistent with the results 

presented in Tables 10 and 11 in terms of the relative performance across different methods3. 

  

 
3 Note that in Table H2, the hit rate for top K (K=10) decreases with the increase of data size. This is because the size 

of the question pool (i.e., the whole test set in this case) used in similarity search increases with the data size, which 

makes it more difficult to find the true question answered by a specific user. However, the relative trend between the 

performance of our TM-OKC and that of other methods remains consistent with what we see in Table 11. 



Table H2: User profiling performance comparison of different methods under different 

data sizes for K=10 (i.e., top 10 hit rate). 

 Data size N (number of Q&A threads) 

 1,000 2,000 4,000 8,000 16,000 32,000 64,000 

Basic text feature 

extraction methods 

TF-IDF features 

(top 100 words) 
1.19% 0.73% 0.60% 0.34% 0.27% 0.17% 0.12% 

TF-IDF features 

(top 500 words) 
1.37% 0.80% 0.66% 0.26% 0.31% 0.20% 0.13% 

TF-IDF features 

(top 1000 words) 
1.37% 0.87% 0.61% 0.27% 0.24% 0.15% 0.13% 

Bayesian topic 

modeling methods 

LDA 5.13% 3.74% 2.40% 1.92% 1.37% 0.74% 0.65% 

TRTM 5.96% 4.02% 2.54% 2.11% 1.41% 0.90% 0.72% 

STM 6.45% 4.12% 2.53% 2.30% 1.55% 0.96% 0.79% 

QATM 6.26% 4.30% 2.40% 2.19% 1.52% 1.05% 0.79% 

LeadLDA1 1.31% 0.72% 0.44% 0.31% 0.19% 0.24% 0.19% 

LeadLDA2 1.50% 0.75% 0.68% 0.37% 0.35% 0.25% 0.21% 

SITS 5.41% 4.09% 2.69% 2.29% 1.61% 1.08% 0.79% 

Pre-trained deep 

language models 
Pre-trained BERT 2.44% 1.87% 1.06% 0.84% 0.71% 0.61% 0.59% 

Topic modeling 

combined with deep 

language models 

NTM 2.32% 2.22% 1.78% 1.90% 1.74% 1.28% 1.04% 

SCHOLAR 4.82% 3.07% 2.10% 1.98% 1.77% 1.30% 1.10% 

Neural matrix 

factorization 
NMF 2.11% 1.97% 1.70% 1.83% 1.68% 1.23% 1.02% 

Our method TM-OKC 7.33%*** 4.51%*** 2.98%** 2.55%** 1.98%** 1.37%* 1.10% 

Note that the statistical significance is calculated compared with the best baseline method under a one-

tailed t-test. * p < 0.1, ** p < 0.05, *** p < 0.01. 
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