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ABSTRACT
Effectively modeling and predicting the information cascades is
at the core of understanding the information diffusion, which is
essential for many related downstream applications, such as fake
news detection and viral marketing identification. Conventional
methods for cascade prediction heavily depend on the hypothe-
sis of diffusion models and hand-crafted features. Owing to the
significant recent successes of deep learning in multiple domains,
attempts have been made to predict cascades by developing neural
networks based approaches. However, the existing models are not
capable of capturing both the underlying structure of a cascade
graph and the node sequence in the diffusion process which, in
turn, results in unsatisfactory prediction performance. In this paper,
we propose a deep multi-task learning framework with a novel
design of shared-representation layer to aid in explicitly under-
standing and predicting the cascades. As it turns out, the learned
latent representation from the shared-representation layer can en-
code the structure and the node sequence of the cascade very well.
Our experiments conducted on real-world datasets demonstrate
that our method can significantly improve the prediction accuracy
and reduce the computational cost compared to state-of-the-art
baselines.
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1 INTRODUCTION
Online social platforms, such as Twitter, Weibo, Wechat, Instgram,
etc. have a significant impact on our daily life. Their dramatic
growth has facilitated fast propagation of information in various
contexts, e.g., the spread of rumors in news, the propagation of
marketing campaigns, the diffusion of innovative technological
achievements, etc. – spurring the ubiquitous phenomenon of in-
formation cascades. Modeling and predicting such cascades is one
of the fundamental components for understanding information
propagation which, in turn, is beneficial for variety of downstream
applications like, for example, fake news detection and viral mar-
keting identification.

Existing studies on modeling information cascades mainly focus
on two aspects: (1) On the one hand, macro-level tasks focused on
estimating cascade growth [3, 6, 12], and forecasting outbreak [5,
16], which are rough estimations and not suitable for micro-level
tasks. (2) On the other hand, micro-level tasks always studying the
local patterns of social influence – which pay more attention to
user-level modeling instead of the cascade-level (e.g., inferring the
action status of a user [12, 14]).

Complementary to these, the conventional methods studying
the information diffusion problem can be summarized into the fol-
lowing four categories: (1) Diffusion-based Approaches [8, 13] make
a strong assumption that the underlying diffusion model follows
a known prior distribution – which often is not quite appropriate
for cascade prediction; (2) Feature-based Approaches [1, 9] focus on
identifying and incorporating complicated hand-crafted features,
which requires extensive domain knowledge and thus is hard to
be generalized to new domains; (3) Generative Modeling-based Ap-
proaches [3, 7] focus on modeling the intensity function of the
arrival process for each message independently. These methods
demonstrate an enhanced interpretability but are still unable to
fully leverage the information encoded in the cascade for a sat-
isfactory prediction; and (4) Deep Learning-based Approaches, es-
pecially Recurrent Neural Networks (RNN) based sequential mod-
els [3, 6, 12, 14]. While automatically learning temporal charac-
teristics, all proposed methods fail short in integrating structural
information of cascades, which are essential for their prediction [4].

While some of the methods mentioned above can achieve cer-
tain improvements in cascade modeling, they still exhibit several
drawbacks. What motivates this work is the lack of methodology to
jointly model cascades from both a micro (user) and a macro (overall
cascade estimate) level. To capture both the underlying structure
of a cascade graph and node sequence in the diffusion process, we
take a full advantage of the modeling from both levels. Inspired
by the great success of multi-task learning, we propose a Deep
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Multi-Task Learning based Information Cascades model (DMT-LIC),
which explicitly models and predicts cascades through a multi-task
framework with a novel design of a shared-representation layer. In
summary, the main contributions of our work are:

• We propose a novel, deep multi-task learning-based method to
learn latent semantics of cascades for prediction in an end-to-
end manner. In addition, our method does not involve massive
and complex feature engineering, which makes our model more
generalizable to new domains.

• We design a shared-representation layer based on the attention
mechanism and gated mechanism to capture both the underlying
structure of a cascade graph and node sequence in the diffusion
process.

• We conduct extensive evaluations on several publicly available
benchmark datasets, demonstrating that DMT-LIC can signifi-
cantly improve the prediction accuracy and reduce the compu-
tational cost on both level tasks compared to state-of-the-art
baselines.

2 PROBLEM AND METHODOLOGIES
In this paper, we formulate a deep multi-task model that jointly
learns the micro-level task and macro-level task of information
cascade modeling, specifically, we focus on the task of activation
prediction and cascade size prediction.
Activation prediction Given a sequence of previously infected
usersU ti = {u1,u2, ...,ui } before the observation time ti , the task
of activation prediction aims to predict the next infected user ui+1
at time ti+1.
Cascade Size PredictionGiven a cascade graphG regarding some
specific information (e.g. a post/news) within an observation time
window ti , we formulate this micro-level task as a regression prob-
lem that aims at predicting the incremental size ∆S after a fixed
time interval ∆t , where ∆S =

��U ti+∆t
�� − ��U ti

��.
We now proceed with elaborating on the proposed DMT-LIC

model. The overall structure and the main components of DMT-
LIC are depicted in Figure 1. The three basic components are: (1)
Embedding layer – embedding the task-specific input into a low-
dimensional space via various embedding methods to represent the
cascade-level and user-level embedding, respectively. (2) Shared-
representation layer – feeding the task-specific embedding to learn
a shared latent representation via attention and gated mechanism.
(3) Multi-Task layer – concatenating the shared-representation with
task-specific embeddings, to form new representations for different
tasks. At last, the representations are connected by different dense
layers to predict the results, i.e., cascade size and next infected
user. In the sequel, we present detailed discussions of the respective
modules.

2.1 Task-specific Embedding Layer
We assume that the inputs of the two tasks are a cascade graph
and user sequence in the cascading process. We employ a graph
representation model and an RNN model to learn embeddings for
these two inputs, respectively.
Cascade Graph embedding The cascade size prediction task is
a macro-level problem, which takes a cascade graph G as input.

Since the cascade graph is a directed acyclic graph and its adja-
cency matrix is not symmetric, we use a multi-layer Graph At-
tention Network (GAT [11]) with multi-head attention to model
the cascade graph. The layer-wise propagation rule is H (l+1) =
σ (
∑K
k=1A

kW kH (l )).
Here,W k is a set of independent trainable weight matrices andK

is the number of single attention. σ (·) denotes activation function,
i.e., ReLU(·). H (l ) ∈ RN×F is the matrix of activations in the lth
layer, where N is the number of nodes in cascade graph, and F is
the number of features.. The input of our fist layer isH0 = Adj+ IN ,
where Adj ∈ RN×N is an adjacency matrix and IN is an identity
matrix. Ak = [ai j ]

k
N×N is attention matrix through a self-attention

mechanism defined as follows:

ai j =
exp(LeakyReLU (cT [Whi | |Whj ]))∑
k ∈N LeakyReLU (cT [Whi | |Whk ])

(1)

After the attention-based GCN layer, the cascade graph G is repre-
sented as a vector matrix Hcas ∈ RN×dcas .
Diffusion Process Embedding For the activation prediction, the
input is an ordered user sequencewith timestamps in a diffusion.We
represent each user in the sequence via a one-hot vector q ∈ RM ,
where M denotes the total number of users in a dataset and all
users are associated with a specific embedding matrix E ∈ RM×D ,
where D is an adjustable dimension. E converts each user into its
representation vector x = qE. Then we employ a bi-directional
LSTM to model this diffusion process sequentially, in which a hid-
den state is used to memorize the diffusion history. At each step
ti , user embedding and previous hidden state are taken as inputs.
Bi-directional LSTM computes the updated hidden state as follows:
↔

hi = Bi-LSTM(xi ,hi − 1),
↔

hi ∈ R
2dseq . Thus, the user sequence is

represented as Huser ∈ RN×2dseq .

2.2 Shared-representation Layer
The task-specific embeddings are fed into the shared-representation
layer, which includes a user importance scoring function and a
shared gate.
User importance Learning Each row ofHcas , a user-level vector,
can be treated as a structural diffusion context for each potentially
infected user. We define a scoring function via an attention mecha-
nism, which measures the importance of a user based on structural
contexts – Auser = softmax(tanh(HcasWattn + battn ) ·Uattn ),

where Wattn ∈ Rdcas×dattn , battn ∈ Rdattn and Uattn ∈

Rdattn×1 are attention parameters, and Auser ∈ RN×1 is the user
importance matrix.
Shared-Gate Given the user importance matrix Auser and user
sequence embedding Huser , the new representation for each in-
fected user can be calculated as Hnew = AuserH

user . Inspired by
the gated mechanisms used in LSTM and GRU, we design a novel
shared-gate as shown in Figure 1, that takes Hnew , Hcas , Huser as
the input. The detailed process is described as follows:

ft = σ
(
hnewt−1 Wf + h

cas
t−1 Uf + h

user
t−1 Vf + bf

)
rt = σ

(
hnewt−1 Wr + hcast−1 Ur + h

user
t−1 Vr + br

)
ct = ft ⊙ ct−1 + (1 − ft ) ⊙ (hnewt−1 Wc + hcast−1 Uc + h

user
t−1 Vc )

ht = rt ⊙ tanhct + (1 − rt ) ⊙ (hnewt−1 Wh + h
cas
t−1 Uh + h

user
t−1 Vh )

(2)
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Figure 1: Overview of DMT-LIC.

where σ denotes the sigmoid function,W∗ ∈ Rdnew×dshare ,U∗ ∈

Rdcas×dshare ,V∗ ∈ R2dseq×dshare and bf ,br ∈ Rdshare . ft is a for-
get gate aiming to forget the irrelevant part of previous information
and update the cell state ct . The reset gate rt is used to control the
influence of ht−1 and compute the output state ht based on ct and
the linear combination of hnewt−1 , hcast−1 and husert−1 . After obtaining
the output H share ∈ RN×dshare from the shared gate, we calculate
the shared representation using a weighted sum pooling mecha-
nism with a non-parametric time decay function f (T − ti ) = l , if
tl−1 ≤ T − ti < tl , and H share =

∑
λf(T−ti )hi .

2.3 Multi-Task Layer
We concatenate the task-specific representation Hcas and Huser

for each task with the shared-representation H share , respectively,
and ultimately feed into different output layers for prediction.

For the activation prediction task, our model predicts the
next infection probability for each user: p̂(ui+1 |huser ,hshare ) =
softmax(MLP(concat(huser ,hshare )), where the learning objective
is to maximize the infection likelihood of all users in a diffusion
sequence, i.e., P̂(U ti ) =

∏l−1
i=1 p(ui+1 |h

user ,hshare ). This task is
trained by minimizing the cross-entropy loss between the predicted
P̂ and true probability P of sequence U ti :

ℓ1
(
P̂ , P

)
=

1
P

P∑
i=1

cross_entropy(P̂ , P) (3)

While for the increment size prediction task, our goal is to predict
the incremental cascade size for a fixed time interval in the future,
which can be done by minimizing the following loss function:

ℓ2
(
∆Si ,∆S̃i

)
=

1
P

P∑
i=1

(
∆Si − ∆S̃i

)2
(4)

where P is the information volume (e.g., the number of posts),
∆Si = MLP(concat(hcas ,hshare )) is the predicted incremental size
for information pi , and ∆S̃i is the ground truth.

Our overall loss function is L = γ ℓ1 + (1 − γ )ℓ2, where γ ∈ [0, 1]
is a learning parameter balancing ℓ1 and ℓ2.

3 EXPERIMENTS
We now discuss our experiments and present the empirical evalua-
tions for the following research-related questions:

• RQ1 How does DMT-LIC perform compared with the state-of-
the-art baselines on both tasks?

• RQ2 Is the shared-representation layer helpful for learning a
good representation for information cascades both structurally
and temporally?

3.1 Experimental Settings
Datasets. To demonstrate the performance of DMT-LIC and the
comparison with some existing methods, we conduct our experi-
ments on two publicly available real-world datasets: Weibo [3] and
APS [10]. The descriptive statistics are shown in Table 1.

Table 1: Descriptive statistics of two datasets.

Weibo APS
# Nodes 10,077 13,945
# Edges 11,956 15,508

# Cascades 306 509
Avg. cascade length 61.2 84.8

Baselines. We compare our proposed model with the following
state-of-the-art baselines: EIC [2], DeepCas [6], CYAN-RNN [14],
DeepHawkes [3], Topo-LSTM [12], and SNIDSA [15]. Note that the
original application of Topo-LSTM, CYAN-RNN and SNIDSA is to
predict node activations, and we replace the logistic classifier in
these models with a diffusion size regressor to predict the size of
cascades. In addition, for DeepCas and DeepHawkes, we replace
the diffusion size regressor at the end of their process with a logistic
classifier to predict node activation.
Evaluation Protocols. For the activation prediction, we cast this
task as a retrieval problem. Hence, we use two widely ranking
metrics for evaluation. They are Mean Reciprocal Rank (MRR) and
Accuracy on top K (A@K). The larger values in A@K and MRR
indicate the better performance. However, for the task of size pre-
diction, we following existing works to choose standard evaluation
metric MSE (mean square error) [3, 6, 12] – the smaller MSE, the
better prediction performance.
Parameter Setups. The parameter settings are as follows. For all
embedding-based and deep learning-based methods, we set the
dimensionality of node embedding to 50, the hidden layer of each
RNN to 32 units, and the hidden dimensions of the one-layer MLP
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to 32, respectively. The learning rate for user embedding is 1× 10−4
and 1 × 10−3 for other variables. The batch size in each iteration
is 32 and the training will stop when the loss on the validation set
does not decline for 10 consecutive iterations. Other parameters
follow default settings in the corresponding papers.

3.2 Performance Comparison (RQ1)
Table 2 shows the results of the performance comparison to the
existing state-of-the-art methods in information cascades modeling
and prediction, from which we can clearly observe that our pro-
posed DMT-LIC model performs the best across almost all metrics
on the two datasets for both macro-level and micro-level tasks. The
overall superiority of DMT-LIC over the baselines stems from the
fact that it leverages multi-task learning.

Table 2: Performance comparison: DMT-LIC vs. baselines.
Datasets Weibo APS

Model
Metric MRR

(%)
A@5
(%)

A@10
(%) MSE MRR

(%)
A@5
(%)

A@10
(%) MSE

EIC 53.27 51.26 58.94 — 63.15 70.23 76.48 —
DeepCas 80.12 71.56 81.22 1.017 81.35 80.21 86.54 0.873

DeepHawkes 83.21 77.22 84.15 0.328 84.57 79.53 86.47 0.276
CYAN-RNN 81.25 79.38 86.14 0.892 87.55 84.13 86.14 1.126
Topo-LSTM 84.23 81.37 94.77 0.411 87.64 86.31 94.72 0.386
SNIDSA 90.15 84.62 97.84 0.364 93.67 87.36 98.63 0.427
DMT-LIC 87.69 86.73 98.72 0.196 94.53 89.15 98.75 0.177

3.3 Model Analysis (RQ2)
To investigate the performance of the shared-representation layer
in our model, we attempt to infer network structure and diffu-
sion sequence using latent representations of nodes from this layer.
Specifically, we conduct link prediction using latent learned node
representations. As shown in Figure 2(a), the structure of the cas-
cade graph is relatively well captured. For the cascade sequence,
we first take the latent representations and perform dimension
reduction with L1 regularization for sparsity promotion, where
the largest value in the reduced dimensional vector represents its
activation time point. In Figure 2(b) the rows represent the reduced
dimensional vectors for 4 randomly sampled users from one cas-
cade on the Weibo dataset. The position with the largest value
in the reduced dimension vector is highlighted in white, which is
consistent with the true cascade sequence. Therefore, both results
indicate that our shared-representation layer is able to capture both
latent structure and sequence in cascades.

4 CONCLUSIONS
Existing research has investigated the information cascades prob-
lem from separate perspectives on micro and macro levels. In this
work, we presented DMT-LIC – the first multi-task learning based
approach for information cascade modeling, which is able to jointly
optimize the two-level tasks. Specifically, we designed a shared
representation layer with graph attention and a novel gated mech-
anism. The experimental results based on two real-world datasets
demonstrate that DMT-LIC outperforms the state-of-the-art base-
lines on both tasks, and the shared-representation layer can well
learn the latent representations that reflect both structural and
sequential patterns. This, in turn, indicates a promising direction
that training and optimizing cascade-related tasks with multi-task
learning. In the future, we plan to extend DMT-LIC to more specific

(a) Network structure inference. (b) Cascade sequence learning.

Figure 2: Visualization of network inference and an exam-
ple of user activation in one cascade on the Weibo dataset.
(a) Edges in black are the correct inferred edges, while edges
highlighted in red are either missed or predicted incor-
rectly. (b) Each row is the vector from shared-representation
layer after dimension reduction. The white cell refers to the
largest value in the vector, corresponding to the position in
the cascade sequence.

applications (e.g., fake news detection) and investigate the problem
of correlating cascade from multiple contexts and spatio-temporal
scales (e.g., spread of viral marketing followed by tweets on social
media) .
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