
Lecture 1 (01/27): Introduction to Python

Decision, Operations & Information Technologies
Robert H. Smith School of Business
Spring, 2020

K. Zhang BMGT 404

When and where

• Lecture discussion
qMonday, Wednesday 8:00 – 9:15, 9:30 – 10:45
qRoom: VMH 3522

• TA Office hour
qTime: TBD
qLocation: 2115 Susquehanna Hall

• My office
qRoom: 4316 Van Munching Hall
qTime: TBD

3

What cover in this course

• Basic python programming
q Install and run python
q Variables, expressions, statements
q Functions, parameters, recursions
q Control structures
q Lists, tuples, dictionaries
q File operations
q String operations
q Modules
q Regular expression
q Visualization

• Python packages for real-world applications
q Database operations (MySQL)
q Data manipulation: Pandas
q Scientific computing: NumPy
q Natural language processing: NLTK
q Machine learning: scikit-learn

4

Recommended textbooks

• Think Python – How to
Think Like a Computer
Scientist. Available from
Amazon.com

• The Python Tutorial

5

Prerequisites

• No prior programming needed
• Recommended

qBasic computer knowledge (e.g., software
installation…)

qDatabase: SQL knowledge

6

Lab sessions

• Must attend
• Within each lab, you need to finish a given

task.
– Typical tasks: reviewing what we’ve learned in

lectures for that week.
• For some labs, you need to submit reports.
• With one lab missing, you will receive 2 points

deduction from your final grade. With 5 or
more labs missing, you will automatically
receive F for this course.

7

Assignments

• All assignments are hands-on programming tasks. You
can discuss with other students, TA, or instructor. But
you must work on the final submission by yourself.

• All assignments due Mondays at 8:00am.
• Each assignment will take about 1-2 hours on average.
• Late submission will receive credit deduction:

q0-1 day: 10%
q1-2 days: 20%
q2-3 days: 30%
q3-5 days: 50%
q> 5 days: will not accept

8

Exams

• A midterm
• 2 quizzes
• I don’t know exactly when or where either are

yet.
qWhen I find out, I will send out an email and post

it on Canvas.
• They will be closed book written tests.

9

Final project

• A group project
qNo more than 3 persons in your group

• An example project can be found here:
http://www.cse.msu.edu/~cse231/PracticeOfC
omputingUsingPython/

• Some projects will be posted soon
• OR
• Your customized project (discuss with me in

advance)

10

Grading policy

Participation 5%*1=5%
Midterm exam 25%*1=25%
Quizzes 10%*2 = 20%
Final project 15%*1=15%
Assignments 5%*7 =35%

Letter grades are assigned as follows:
Letter Grade Points

A+ 100 – 97
A 96.9 – 93
A- 92.9 – 90
B+ 89.9 – 87
B 86.9 – 83
B- 82.9 – 80
C+ 79.9 – 77
C 76.9 – 73
C- 72.9 – 70
D+ 69.9 – 67
D 66.9 – 63
D- 62.9 – 60
F Below 60

11

Attendance

• Encourage you to attend every lecture
session and lab session
qMight have some random attendance

checking
qReceive ‘F’ if absence for 5+

• Failing to attend midterm or quizzes will
receive ‘F’ for the course except extreme
reasons.

12

Getting help

• Teaching Assistant: Yash Srivastava
(yash.srivastava@rhsmith.umd.edu)

• Please email both TA and me with
‘BMGT404’ in the title

• Regular Office Hour
qTBD

• Non-regular Office Hour
qAppointments by email preferred

• Course webpage and EMLS
13

Hardware Architecture

14

http://upload.wikimedia.org/wikipedia/commons/3/3d/RaspberryPi.jpg 15

Software

Input
and Output

Devices

Central
Processing

Unit

Main
Memory

Secondary
Memory

Generic
Computer

16

Definitions

17

• Central Processing Unit: Runs the Program - The CPU is
always wondering “what to do next”? Not the brains
exactly - very dumb but very very fast

• Input Devices: Keyboard, Mouse, Touch Screen

• Output Devices: Screen, Speakers, Printer, DVD Burner

• Main Memory: Fast small temporary storage - lost on reboot - aka RAM

• Secondary Memory: Slower large permanent storage - lasts until deleted -
disk drive / memory stick

What
Next?

Software

Input
and Output

Devices

Central
Processing

Unit

Main
Memory

Secondary
Memory

Generic
ComputerWhat

Next?

if x< 3: print

18

Software

Input
and Output

Devices

Central
Processing

Unit

Main
Memory

Secondary
Memory

Machine
Language

What
Next?

01001001
00111001

19

Python as a Language

20

Python is the language of the Python
Interpreter and those who can converse with
it. An individual who can speak Python is
known as a Pythonista. It is a very
uncommon skill, and may be hereditary.
Nearly all known Pythonistas use software
initially developed by Guido van Rossum.

21

Introduction to Python

• Python is Interpreted: Python is processed at runtime by
the interpreter. You do not need to compile your
program before executing it. This is similar to PERL and
PHP.
q Not compiled like Java
q Code is written and then directly executed by an interpreter
q Type commands into interpreter and see immediate results

22

ComputerRuntime
EnvironmentCompilerCodeJava:

ComputerInterpreterCodePython:

Introduction to Python

• Python is Interactive: You can actually sit at a Python
prompt and interact with the interpreter directly to write
your programs.
q Allows you to type commands one-at-a-time and see results
q A great way to explore Python’s syntax

23

Introduction to Python

• Python is Object-Oriented: Python supports Object-Oriented
style or technique of programming that encapsulates code
within objects. (we will NOT cover this in this course)

• Python is a Beginner's Language: Python is a great language
for the beginner-level programmers and supports the
development of a wide range of applications from simple text
processing, numerical computing, web browsers to games.

24

Why Python?

25

• Easy-to-learn: Python has few keywords, simple structure, and a clearly defined syntax.
This allows the student to pick up the language quickly.

• Easy-to-read: Python code is more clearly defined and visible to the eyes.
• Easy-to-maintain: Python's source code is fairly easy-to-maintain.
• A broad standard library: Python's bulk of the library is very portable and cross-platform

compatible on UNIX, Windows, and Macintosh.
• Interactive mode: Python has support for an interactive mode which allows interactive

testing and debugging of snippets of code.
• Portable: Python can run on a wide variety of hardware platforms and has the same

interface on all platforms.
• Extendable: You can add low-level modules to the Python interpreter. These modules

enable programmers to add to or customize their tools to be more efficient.
• Databases: Python provides interfaces to all major commercial databases.
• GUI Programming: Python supports GUI applications that can be created and ported to

many system calls, libraries and windows systems, such as Windows MFC, Macintosh, and
the X Window system of Unix.

• Scalable: Python provides a better structure and support for large programs than shell
scripting.

What Python can do (1)?

26

• With Python and OpenCV, we can do face
detection

What Python can do (2)?

27

• With BeautifulSoup and urllib, we can write a
Python script to get the winners of the Food
and Drink categories in the Chicago Readers'
Best of 2011 list.

What Python can do (3)?

28

• With MySQLdb, we can write a Python
script to fetch all records in the coworker
database.

What Python can do (4)?

29

• With matplotlib, we can
make beautiful plots.

What Python can do (5)?

30

• With NLTK, we can do many language
processing operations.

First Python program

31

• Interactive mode programming
qWhen you enter into python IDE, you will see

three greater signs. It means you are under the
interactive mode.

qThen you can write your code to let Python
interpreter execute.

q>>> print(‘Hello, Python!’)
Hello, Python! (this is what you see when

you hit the enter)
q This mode is useful for debugging.

First Python program

32

• Script mode programming (mostly used)
qWe will write a python program in a script (file). Python

files have extension .py.
qFor example, test.py

#!/usr/bin/python
print “Hello, Python!”
x = 3
y = 5
sum = x+y
print(‘x+y=’,sum)

qWe run this program under the command prompt as
follows.
python test.py
You will see: Hello, Python

x+y= 8

The print statement

33

• String itself can also have ‘ or “
• We will use escape character (\)

The print statement

34

• print a string: string needs to be surrounded by
double or single quotes
qprint(“text”) or print(‘text’)

• print() (print a blank line)

The print statement

35

• print(“African or ‘European’ swallows?”)
qAfrican or ‘European’ swallows?

• print(“Suppose two swallows \”carry\” it
together.”)
qSuppose two swallows “carry” it together.

Comments

36

• Syntax:
q# comment text (one line)

• test.py
Suzy Student, CSE 142, Fall 2097
This program prints important messages.
print("Hello, world!")
Print("") # blank line
print("Suppose two swallows \"carry\" it together.")
print('African or "European" swallows?')

Output:
Hello, world!

Suppose two swallows "carry" it together.
African or European swallows?

Program steps or flow

37

• Like a recipe or installation instructions, a
program is a sequence of steps to be done in
order.
• Some steps are conditional - they may be

skipped.
• Sometimes a step or group of steps are to be

repeated.
• Sometimes we store a set of steps to be used

over and over as needed several places
throughout the program.

Program:

x = 2
print(x)
x = x + 2
print(x)

Output:

2
4

x = 2

print(x)

x = x + 2

print(x)

When a program is running, it flows from one step to the
next. As programmers, we set up “paths” for the program

to follow.

Sequential steps

38

Output:

Smaller
Finish

Program:

x = 5
if x < 10:

print('Smaller’)
if x > 20:

print('Bigger')

print('Finish’)

x = 5

x < 10 ?

print('Smaller’)

x > 20 ?

print('Bigger’)

print('Finish’)

Yes

No

Conditional steps

39

No

Yes

Repeated steps
Output:

5
4
3
2
1
Blastoff!

Program:

n = 5
while n > 0 :

print(n)
n = n – 1

print('Blastoff!')

n > 0 ?

Loops (repeated steps) have iteration variables that
change each time through a loop. Often these
iteration variables go through a sequence of numbers.

No

print('Blastoff’)

Yes

n = 5

print(n)

n = n -1

40

#!/usr/bin/python

name = input('Enter file:')
handle = open(name, 'r')
text = handle.read()
words = text.split()

counts = dict()
for word in words:

counts[word] = counts.get(word,0) + 1
bigcount = None
bigword = None

for word,count in counts.items():
if bigcount is None or count >

bigcount:
bigword = word
bigcount = count

print(bigword, bigcount)

Sequential

Repeated

Conditional

41

name = input('Enter file:')
handle = open(name, 'r')
text = handle.read()
words = text.split()
counts = dict()
for word in words:

counts[word] = counts.get(word,0) + 1

bigcount = None
bigword = None
for word,count in counts.items():

if bigcount is None or count > bigcount:
bigword = word
bigcount = count

print(bigword, bigcount)

A short Python “Story”
about how to count

words in a file

A word used to read
data from a user

A sentence about
updating one of the

many counts

A paragraph about
how to find the largest

item in a list

42

Summary

• This is a quick overview of Introduction to Python

• We will revisit these concepts throughout the course

• Focus on the big picture

43

