
Lecture 2: Variables, expressions, statements

Decision, Operations & Information Technologies
Robert H. Smith School of Business
Spring, 2020

K. Zhang BMGT 404

Constants

• Fixed values such as numbers, letters, and
strings are called “constants” because
their value does not change.

• Numeric constants are as you expect
• String constants use single quotes (‘) or

double quotes (“)

2

>>> print(123)
123
>>> print(98.6)
98.6
>>> print('Hello world')
Hello world

Variables

• A variable is a named place in the
memory where a programmer can store
data and later retrieve the data using the
variable “name”.

• Programmers need to choose the names
of the variables.

• You can change the contents of a variable
in a later statement.

3

x = 12.2
y = 14

12.2x

14 y

Variables

• A variable is a named place in the
memory where a programmer can store
data and later retrieve the data using the
variable “name”.

• Programmers need to choose the names
of the variables.

• You can change the contents of a variable
in a later statement.

4

x = 12.2
y = 14
x = 100

12.2x

14 y

100

Variable name rules

1. Must start with a letter or underscore _
2. Only consist of letters, numbers, and

underscores
3. Case sensitive

q Different: smith Smith SMITH SmiTH

4. You can not use reserved words as
variable names

smith $smiths smith23 _smith _23_
23smith smith.23 a+b smiTH -smith

5

Variable name rules

1. Must start with a letter or underscore _
2. Only consist of letters, numbers, and

underscores
3. Case sensitive

q Different: smith Smith SMITH SmiTH

4. You can not use reserved words as
variable names

smith $smiths smith23 _smith _23_
23smith smith.23 a+b smiTH -smith

6Green: Good var names Red: Bad var names

Reserved words

7

and del for is raise assert elif from
lambda return break else global not

try class except if or while continue
exec import pass yield def finally in

print as with

>>> 32smith = ‘hello world’
SyntaxError: invalid syntax

>>> class = 27
SyntaxError: invalid syntax

Variable type

• The programmer (and the interpreter) can identify
the type of a variable.

• You do not need to explicitly define or declare the
type of a variable.
qint x = 3 (for most other languages)
qx = 3 (for Python)

• Python has five standard data types
qNumbers
qString
qList
qTuple
qDictionary

8

Numbers

• Python supports four different numerical types:
qint (signed integers)
qlong (long integers, they can also be represented in

octal and hexadecimal)
qfloat (floating point real values)
qcomplex (complex numbers)

9

Strings

• Strings in Python are identified as a contiguous
set of characters represented in the single or
double quotes.

• Subsets of strings can be taken using the slice
operator ([] and [:]) with indexes starting at 0
in the beginning of the string.

10

#!/usr/bin/python

str = 'Hello World!'

print(str) # Prints complete string
print(str[0]) # Prints first character of the string
print(str[2:5]) # Prints characters starting from 3rd to 5th
print(str[2:]) # Prints string starting from 3rd character

Output:
Hello World!
H
llo
llo World!

Lists

• Lists are the most versatile of Python’s compound
data types.

• A list contains items separated by commas and
enclosed within square brackets([]).

• The values stored in a list can be accessed using
the slice operator ([] and [:]) with indexes
starting at 0 in the beginning of the list.

11

list = ['abcd', 786 , 2.23, 'john', 70.2]
tinylist = [123, 'john']

print(list) # Prints complete list
print(list[0]) # Prints first element of the list
print(list[1:3]) # Prints elements starting from 2nd till 3rd
print(list[2:]) # Prints elements starting from 3rd element

Output:
['abcd', 786, 2.23, 'john', 70.2]
abcd
[786, 2.23]
[2.23, 'john', 70.2]

Tuples

• A tuple is another sequence data type that is
similar to the list.

• A tuple contains items separated by commas and
enclosed within parentheses ().

• Difference between lists and tuples:
qElements and size in lists can be changed, while tuples

can not

12

#!/usr/bin/python

tuple = ('abcd', 786 , 2.23, 'john', 70.2)
tinytuple = (123, 'john')

print(tuple) # Prints complete list
print(tuple[0]) # Prints first element of the list
print(tuple[1:3]) # Prints elements starting from 2nd till 3rd
print(tuple[2:]) # Prints elements starting from 3rd element

Output:
('abcd', 786, 2.23, 'john', 70.2)
abcd
(786, 2.23)
(2.23, 'john', 70.2)

Dictionary

• Consists of a number of key-value pairs.
• It is enclosed by curly braces ({ })

• We will see more details about dictionary later.

13

Get variable type

• If you are not sure what type a variable has,
the interpreter can tell you by using type.
q>>> type(‘Hello, world!’)

<type ‘str’>
q>>> type(17)

<type ‘int’>
q>>> type(3.2)

<type ‘float’>
q>>> type(‘4.7’)

<type ‘str’>
14

Type matters

• Python knows what “type” everything is.

• Some operations are prohibited.
qYou can not add a string to an integer.

15

>>> a = '123'
>>> b = a + 1
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: cannot concatenate 'str' and
'int' objects

Type matters

• Operations on the same type operands will
lead to results with the same type
qint + int => int
qint – int => int
qint * int => int
qint / int => int (Python 2) float (Python 3)

16

>>> a = 123
>>> b = a + 1
>>> print(b)
123
>>> print(a/b)
0.99193548709677

Type conversions

• When you put an integer and floating point in an
expression, the integer is implicitly converted to a
float.

• You can control this with the built-in functions int() and
float()

17

>>> print(float(99) / 100)
0.99
>>> i = 42
>>> type(i)
<type 'int'>
>>> f = float(i)
>>> print (f)
42.0
>>> type(f)
<type 'float'>
>>> print (1 + 2 * float(3) / 4 – 5)
-2.5

String conversions

• You can use int() and float() to convert between strings
and integers/floating points.

• You will get an error if the string does not contain
numeric characters.

18

>>> sval = '123'
>>> type(sval)
<type 'str'>
>>> print (sval + 1)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: cannot concatenate 'str' and 'int'
>>> ival = int(sval)
>>> type(ival)
<type 'int'>
>>> print (ival + 1)
124
>>> nsv = 'hello bob'
>>> niv = int(nsv)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
ValueError: invalid literal for int()

User input

• We can ask Python to pause and read data
from the keyboard using input() function.

• The input() function returns a string.

19

>>> name = input(’What’s your name? ')
What’s your name? KZ # You type KZ using keyboard
>>> print ('Welcome', name)
Welcome KZ

Converting user input

• If we want to read a number from the
keyboard, we must convert it from a string to a
number using a type conversion function [int()
or float()].

20

>>> inp = input('Europe floor? ')
Europe floor? 2 # 2 is the input from keyboard
>>> usf = int(inp) + 1
>>> print ('US floor', usf)
US floor 3

The assignment statement

• An assignment statement creates new
variables and gives them values.

• An assignment statement consists of an
expression on the right-hand side and a
variable to store the result.
q>>> message = “hello, world”
q>>> x = 17
q>>> pi = 3.14159

21

Expressions

• An expression is a combination of values,
variables, and operators. Not every
expression contains all of these elements.

• If you type an expression on the
command line (after >>>), the interpreter
evaluates it and displays the result.
q>>> 1+2*7

15
q>>>’Hello’

Hello
22

Operators

• Operators are special symbols that represent
computations like addition and multiplication.

• The values the operator uses are called operands.
• When a variable name appears in the place of an

operand, it is replaced with its value before the
operation is performed.

• Types of operator
qArithmetic operators
qComparison (Relational) operators
qAssignment operators
q Logical operators
qBitwise operators
qMembership operators
q Identity operators

23

Arithmetic operators

Assume variable a
holds 10 and
variable b holds 20.

24

Comparison operators

Compare values on
either sides of them
and decide the
relation among them.

Assume variable a
holds 10 and variable
b holds 20.

25

Assignment operators

Assume variable a
holds 10 and
variable b holds 20.

26

Bitwise operators

Assume variable a
holds 60 and variable
b holds 13.

Binary representation:
a = 0011 1100
b = 0000 1101

a & b = 0000 1100
a | b = 0011 1101
a ^ b = 0011 0001
~a = 1100 0011

27

Logical operators

Assume variable a holds True and variable b holds
False.

28

Membership operators

Test for memberships in a sequence, such as strings,
lists, or tuples.

29

Identity operators

Compare the memory location of two objects.

30

Operator precedence

• When more than one operator appears in an
expression, the order of evaluation depends on the
rules of precedence.
qParentheses have the highest precedence and can be

used to force an expression to evaluate in the order you
want.

qExponentiation has the next highest precedence.
qMultiplication and Division have the same precedence,

which is higher than Addition and Subtraction, which
also have the same precedence

qOperators with the same precedence are evaluated
from left to right.

31

Operator precedence

32

Assignment statement

• An assignment statement consists of an
expression on the right-hand side and a
variable to store the result.

X = 3.9 * X * (1 - X)

33

>>>x = 3.9 * x * (1 - x)

0.6>>> X =

The right side is an expression.
Once the expression is evaluated,
the result is placed in (assigned
to) x.

0.6 0.6

0.4

0.936

A variable is a memory
location used to store a value
(0.6)

x = 3.9 * x * (1 - x)

0.6 0.93X =

The right side is an expression. Once
the expression is evaluated, the result is
placed in (assigned to) the variable on
the left side (i.e., x).

0.93

A variable is a memory location used
to store a value. The value stored in a
variable can be updated by replacing
the old value (0.6) with a new value
(0.93).

Integer division is weird (Python 2.*)

• Integer division truncates.
q>>> print 10 / 2

5
q>>> print 9 / 2

4
• Floating point division produces floating

point numbers.
q>>> 10.0 / 2.0

5.0
q>>> 9.0 / 2.0

4.5
36

This changes in
Python 3.0

Mixing integer and floating

• When you perform an operation where
one operand is an integer and the other
one is a floating point, the result is a
floating point.
q>>> print 10.0 / 2

5.0
q>>> print 9 / 2.0

4.5

37

Statements

• Simple statements: executed sequentially
and do not affect the flow of control.
qPrint statement
qAssignment statement
qAnd many others…

• Compound statements: may affect the
sequence of execution.

38

| expression_stmt
| assert_stmt
| assignment_stmt
| augmented_assignment_stmt
| pass_stmt
| del_stmt
| return_stmt
| yield_stmt
| raise_stmt
| break_stmt
| continue_stmt
| import_stmt
| global_stmt
| nonlocal_stmt

