
Lecture 4: Loop Structure

Decision, Operations & Information Technologies
Robert H. Smith School of Business
Spring, 2020

K. Zhang BMGT 404



Repeated steps

• Computers are often used to automate 
repetitive tasks (loop)

2

n > 0 ?

n = n -1

No

print ('Blastoff’)

Yes

n = 5

print (n)

Output:

5
4
3
2
1
Blastoff! 



The while statement

• Syntax:
while expression:

statement 1
statement 2
…
statement N

next statement
• The flow of execution

a) Evaluate the expression, yielding True or False
b) If the expression is False, exit the entire while statement 

and continue execution at the next statement
c) If the expression is True, execute each of the statements 

in the body and then go back to step (a)
3

while statement



Example

4

test1.py

x = 5
while x > 3:

print (x)
x = x – 1

print (x+1)

python test1.py
5
4
4



n = 5
while n > 0 :

print ('Lather’ )
print ('Rinse')

print ('Dry off!')

n > 0 ?
No

print ('Dry off!’)

Yes

n = 5

print ('Lather')

print ('Rinse')

What is wrong with this loop?

An infinite loop

5



n = 0
while n > 0 :

print('Lather’)
print('Rinse')

print('Dry off!')

n > 0 ?
No

print('Dry off!')

Yes

n = 0

Print('Lather')

print('Rinse')

What does this loop do?

Another loop

6



Example

7

test2.py

x = 5
while x != 1:

print (x)
if x%2 == 0:

x = x / 2
else:

x = x*3 + 1

python test2.py
5
16
8
4
2



The nested while statement

• Syntax:
while expression:

statement 1
statement 2
…
while expression:

statement 1
statement 2
…
statement N

statement N
next statement

8

Outer while 
statement

inner while 
statement



Example

9

test3.py

x = 5
while x != 1:

print (x)
while x > 3:

print (‘x>3’)
x = x – 1

x = x - 1

python test3.py

Output:
5
x>3
x>3
3
2



Indefinite loop

• While loops are called “indefinite loops” 
because they keep going until a logical 
expression becomes False

• The loops we have seen so far are easy to 
examine to see if they will terminate or if they 
are “infinite loops”

• Sometimes it is harder to be sure if a loop will 
terminate

10



Definite loop

• Quite often we have a list of items –
effectively a finite set of things

• We can write a loop to run the loop once for 
each of the items in a set using the Python for
construct

• These loops are called “definite loops” 
because they execute an exact number of times

• We say that “definite loops iterate through the 
members of a set”

11



The for statement

• Syntax:
for iterator in expression_list:

statement 1
statement 2
…
statement N

• The flow of execution
qThe expression list is evaluated once; it should yield 

an iterable object (e.g., list, tuple, etc.)
qFor each member in the expression_list, execute all 

statements in the for body.

12

for statement



• The iteration variable 
“iterates” though the 
sequence (ordered set)

• The block (body) of 
code is executed once 
for each element in the 
sequence

• The iteration variable 
moves through all of 
the values in the 
sequence

for i in [5, 4, 3, 2, 1]: :
print (i)

Iteration variable
Five-element sequence

The for statement

13



Example (1)

14

for i in [5, 4, 3, 2, 1]: :
print (i)

print ('Blastoff!’)

Output
5
4
3
2
1
Blastoff!



for i in [5, 4, 3, 2, 1]: :
print (i)

print ('Blastoff!')

5
4
3
2
1
Blastoff!

Done?
Yes

print 'Blast off!'

print i

No

Move i ahead

Definite loops (for loops) have explicit iteration 
variables that change each time through a loop.  These 
iteration variables move through the sequence or set. 

The for statement

15



Example (2)

16

for i in [5, 4, 3, 2, 1]: :
if i % 2 == 0:

print (i, “: even”) 
else:

print (i, “: odd”)
print ('Blastoff!’)

Output
5: odd
4: even
3: odd
2: even
1: odd
Blastoff!



Nested for statement

• Syntax:
for iterator in expression_list:

statement 1
statement 2
…
for iterator in expression_list:

statement 1
…
statement N

statement (outer for)
statements (after outer for)

17

Outer for 
statement

Inner for statement



Nested for statement

• Syntax:
for iterator in expression_list:

statement 1
statement 2
…
for iterator in expression_list:

statement 1
…
statement N

statement (outer for)
statements (after outer for)

• The flow of execution
q Consider the “inner for loop” as “one statement” within the outer loop 

body
q For each member in the “outer loop”, execute all statements
q When execute inner for loop statement, consider it as a real loop

18

Outer for 
statement

Inner for statement



Example (1)

19

for i in [1, 2, 3] ::
for j in [1, 2, 3]:

print (i*j)
print ('Blastoff!')

Output
1
2
3
2
4
6
3
6
9
Blastoff!



Example (2)

20

for i in [1, 2, 3]: :
j = 1
while j<=i:

print (i)
j = j+1

print ('Blastoff!’)

Output
1
2
2
3
3
3
Blastoff!



• The trick is “knowing” 
something about the 
whole loop when you 
are stuck writing codes 
that only sees one 
entry at a time

Making “smart” loops

21

Set some variables to 
initial values

1. Look for something or 
do something to each 
element separately.

2. Update a variable.

for element in set:

Look at the variables.



3

largest_so_far -1 3 41 74

41 12 9 74 15

22

What is the largest number



What is the largest number

23

largest_so_far = -1
for current in [3, 41, 12, 9, 74, 15]: :

if current > largest_so_far:
largest_so_far = current

print (largest_so_far)



Counting in a loop

To count how many times we execute a loop we introduce a 
counter variable that starts at 0 and we add one to it each time 
through the loop.

24

i = 0
print ('Before', i)
for thing in [9, 41, 12, 3, 74, 15] :

i= i+ 1
print (i, thing)

print ('After', i)

python countloop.py
Before 0
1 9
2 41
3 12
4 3
5 74
6 15
After 6



Summing in a loop

To add up a value we encounter in a loop, we introduce a sum 
variable that starts at 0 and we add the value to sum each time 
through the loop.

25

sum = 0
print ('Before', sum)
for thing in [9, 41, 12, 3, 74, 15] :

sum= sum+ thing
print (sum, thing)

print ('After', sum)

python sumloop.py
Before 0
9 9
50 41
62 12
65 3
139 74
154 15
After 154



Finding the average in a loop

An average just combines the counting and sum patterns 
and divides when the loop is done.

26

count = 0
sum = 0
print ('Before', count, sum)
for value in [9, 41, 12, 3, 74, 15] :

count = count+1
sum= sum+ value
print (count, sum, value)

print ('After', count, sum, sum/count)

python avgloop.py
Before 0 0
1 9 9
2 50 41
3 62 12
4 65 3
5 139 74
6 154 15
After 6 154 25



Search in a loop

If we just want to search and know if a value was found, we use a 
variable that start at False and is set to True as soon as we find the 

value.

27

found = False
print ('Before', found)
for value in [9, 41, 12, 3, 74, 15] :

if value == 3:
found = True

print (found, value)
print ('After', found)

python searchloop.py
Before False
False 9
False 41
False 12
True 3
True 74
True 15
After True



Another example

28

i = 1
height = 5
while i <= height:

j = 1
line = ‘’
while j <= i:

line += str(i*j) + ‘\t’
j = j+1

print (line)
i = i+1

python nestedloop.py

1
2 4
3 6 9
4 8 12 16
5 10 15 20 25



Breaking out of a loop

• The break statement ends the current
innermost loop and jumps to the statement 
immediately following the loop.

• It can happen anywhere in the body of the 
loop, depending on your needs.
while True:

line = input('> ')
if line == 'done' :

break
print(line)

print('Done!')

>	hello	there
hello	there
> finished
finished
>	done
Done!

Texts in green 
here are 

received from 
the keyboard

29



Breaking out of a loop

• The break statement ends the current
innermost loop and jumps to the statement 
immediately following the loop.

• It can happen anywhere in the body of the 
loop, depending on your needs.
while True:

line = input('> ')
if line == 'done' :

break
print(line)

print('Done!')

>	hello	there
hello	there
> finished
finished
>	done
Done!

Texts in green 
here are 

received from 
the keyboard

30



Breaking out of a loop

• All statements in the loop body and after break  
will NOT be executed if break happens.

x = 5
while x > 0:

print (x)
if x == 3:

break
x = x – 1

print x

Output:

5
4
3
3

31



Breaking out of a loop

• The break statement ends the current loop and 
jumps to the statement immediately following the 
loop.

• All statements in the loop body and after break  
will NOT be executed if break happens.
x = 5
while x > 2:

print (x)
while True:

print(‘x > 3’)
if  x == 3 :

break
x = x - 1

x = x – 1
print (x)

Output:

5
x>3
x>3
x>3
2

Innermost 
loop

32



The continue statement

• The continue statement ends the current 
iteration of the innermost loop and jumps to 
the top of the loop and starts the next iteration. 

• It can happen anywhere in the body of the 
loop, depending on your needs.
while True:

line = input('> ')
if line == '#' :

continue
if line == 'done' :

break
print(line)

print('Done!')

Texts in green 
here are 

received from 
the keyboard

> hello there
hello there
> #
> print this!
print this!
> done
Done! 33



The continue statement

• The continue statement ends the current 
iteration and jumps to the top of the loop and 
starts the next iteration. 

• It can happen anywhere in the body of the 
loop, depending on your needs.
while True:

line = input('> ')
if line == '#' :

continue
if line == 'done' :

break
print(line)

print('Done!')

Texts in green 
here are 

received from 
the keyboard

> hello there
hello there
> #
> print this!
print this!
> done
Done! 34



Example

x = 5
while x > 0:

x = x – 1
if x == 3:

continue
print (x)

print(x)

Output:

4
2
1
0
0

35



Example

x = 5
while x > 2:

print (x)
while x > 0:

x = x - 1
if  x < 3 :

continue
print (‘x < 3’)

else:
print (‘x >= 3’)

x = x – 1
print (x)

Output:

5
x>=3
x>=3
-1

Innermost 
loop

36


