
Lecture 5: Lists, Tuples, and Dictionaries

Decision, Operations & Information Technologies
Robert H. Smith School of Business
Spring, 2020

K. Zhang BMGT 404

List

• A list is a kind of collection
• A collection allows us to put many values in a

single “variable”
qscores = [50, 60, 90]
qfriends = [‘alice’, ‘bob’, ‘charle’]

2

List constants

• List constants are
surrounded by square
brackets and the
elements in the list are
separated by commas.

• A list element can be
any Python object –
even another list.

• A list can be empty
3

>>> print([1,23,45])
[1,23,45]
>>> print([‘red’,’blue’])
[‘red’,’blue’]
>>> print([25,’green’])
[25,’green’]
>>> print([1,[3,4],37])
[1,[3,4],37]
>>> print ([])
[]

Accessing elements

• We can get at any single element in a list using
an index specified in square brackets

• Index starts from 0
• Index must be integer

4

1 3 45 10

Index: 0 1 2 3
>>> x = [1,3,45,10]

>>> print (x[1])

3

Accessing elements

• If the index is negative value, it counts
backward from the end of the list

5

1 3 45 10

Index: -4 -3 -2 -1
>>> x = [1,3,45,10]

>>> print (x[-1])

10

List length

• The len() function takes a list as a parameter
and returns the number of elements in the list

• numbers1 = [1, 3, 45, 10]
• numbers2 = [1, [3, 45], 10]

6

>>> numbers1 = [1,3,45,10]
>>> print (len(numbers1))
4
>>> numbers2 = [1,[3,45],10]
>>> print (len(numbers2))
3

Lists are mutable

• Lists are “mutable” – we can change an
element of a list using index operator

7

1 3 45 10

Index: 0 1 2 3
>>> x = [1,3,45,10]

>>> x[2] = 33

>>> print (x)

[1, 3, 33, 10]

1 3 33 10

Index: 0 1 2 3

The range function

• The range(m) function returns a list of
numbers that range from zero to m-1

• The range(x, y) function returns a list of
numbers that range from x to y-1

• If x>y, returns an empty range

8

>>> print (list(range(4)))
[0,1,2,3]

>>> print (list(range(3,9)))
[3,4,5,6,7,8]

>>> print (list(range(4,1)))
[]

List membership

• in is a boolean operator that tests membership
in a sequence.

• not in to test whether an element is not a
member of a list

• They do not modify the list

9

>>> fruit = [‘apple’,’banana’,’orange’]
>>> ‘banana’ in fruit
True

>>> x = [3,4,5,6,7,8]
>>> 2 not in x
True

Lists and for loops

• The generalized syntax of a for loop with lists
is:
for variable in ListName:

Statements

10

x = range(3,6)
sum = 0.0
for i in x:

sum += i
avg = sum/len(x)

print (“average is: ”, avg)

x = range(3,6)
sum = 0.0
i = 0
While i<len(x):

sum += x[i]
i = i+1

avg = sum/len(x)

print (“average is: ”, avg)

i = 0
while i<len(ListName):

variable = ListName[i]
Statements
i = i+1

List operations

• We can create a new list by adding two
existing lists together

11

>>> a = [1,2,3]
>>> b = [4,5,6]
>>> c = a + b
>>> print (c)
[1,2,3,4,5,6]

>>> d = [‘x’,’y’]
>>> e = a + d
>>> print (e)
[1,2,3,’x’,’y’]

List operations

• Lists can be sliced using :
qListName[x:y] returns a

sublist from index x to
index y-1

qListName[:x] returns a
sublist from index 0 to
index x-1

qListName[x:] returns a
sublist from index x to the
end

12

>>> a = [9,41,12,3,77,19]
>>> a[1:3]
[41,12]

>>> a[:4]
[9,41,12,3]

>>> a[3:]
[3,77,19]

List operations

• Using slices : to delete list
elements is error prone

• Python provides an
alternative that more
readable
qdel listName[i] delete the

element with index i
qdel listName[i:j] delete

elements with index from i
to j-1

13

>>> a = [9,41,12,3,77,19]
>>> a[1:3] = []
>>> print a
[9,3,77,19]

>>> del a[1]
>>> print (a)
[9,77,19]

>>> del a[:2]
>>> print (a)
[19]

List methods (1)

• Building a list from scratch
qWe can create an empty list and then add elements

using the append method
qThe list stays in order and new elements are added

at the end of the list

14

>>> a = list() # a = []
>>> print (a)
[]
>>> a.append(‘book’)
>>> a.append(30)
>>> print (a)
[‘book’,30]

List methods (2)

• A list is an ordered sequence
qA list can be sorted (i.e., change its order)
qThe sort method means “sort yourself”

15

>>> a = [‘Joseph’,’Glenn’,’Sally’]
>>> a.sort()
>>> print (a)
[‘Glenn’,’Joseph’,’Sally’]

>>> print (a[1])
Joseph

Built-in functions

16

>>> a = [3,44,13,11,77,15]
>>> print (len(a))
6

>>> print (max(a))
77

>>> print (min(a))
3

>>> print (sum(a))
163

>>> print (sum(a)/len(a))
27

Example

17

numList = list()

while True:
inputs = input(‘Enter a number: ’)

if inputs == ‘done’:
break

value = float(inputs)

numList.append(value)

average = sum(numList) / len(numList)

print (‘Average: ’,average)

Matrices

• Nested lists are often used to represent
matrices.

18

>>> matrix = [[1,2,3],[4,5,6],[7,8,9]]
>>> matrix[1]
[4,5,6]

>>> matrix[1][2]
6

19

Tuples

Mutability

• A tuple is similar to a list except that it is
immutable. (The elements of a tuple can not be
modified)

• A tuple is a comma-separated list of values.
Parenthesis is not necessary, but
recommended.

20

>>> tuple1 = ‘a’,’b’,’c’

>>> tuple2 = (‘a’,’b’,1)
>>> tuple2[2] = 5 (ERROR!!!)

Things not to do with tuples

21

Tuples are more efficient

• Since Python does not have to build tuple
structures to be modifiable, they are simpler
and more efficient in terms of memory use and
performance than lists

• So in our program when we are making
“temporary variables”, we prefer tuple over
lists

22

Tuple

• To create a tuple with a single element, we have
to include the final comma
q>>> a_tuple = (‘a’ ,)

• All slice operation are similar to lists
• Even we can not modify the elements of a tuple,

we can replace it with a different tuple
q>>> a_tuple = (‘a’, ‘b’, ‘c’)
q>>> a_tuple = (‘A’ ,) + a_tuple[1:]
q>>> print (a_tuple)
q(‘A’, ‘b’, ‘c’)

23

Tuples and assignment

• We can put a tuple on the left hand side of an
assignment statement

• We can even omit the parenthesis
• To swap two values, we can use tuple

assignment to neatly solve this problem

24

>>> (x, y) = (4,’hello’)
>>> print (y)
hello

>>> a, b = (1,7)
>>> a, b = b, a
>>> print (a)
7

Tuples are comparable

• The comparison operators work with tuples
and other sequences if the first item is equal,
Python goes on to the next element, and so on,
until it finds elements that differ.

25

Random numbers

• The random module contains a function called
random that returns a floating point number
between 0.0 and 1.0.

26

>>> import random
>>> x = random.random()
>>> print (x)
0.15156642489

>>> y = random.random()
>>> print (y)
0.32856673042

27

Dictionaries

Dictionaries

• The compound types we have learned: lists
and tuples – use integers as indices.

• Dictionaries are similar to these type except
that they can use any immutable type as an
index.

• Create an empty dictionary
qeng2sp = {}
qeng2sp = dict()

28

>>> eng2sp = {}
>>> eng2sp[‘one’] = ‘uno’
>>> eng2sp[‘two’] = ‘dos’
>>> print (eng2sp)
{‘one’:’uno’, ‘two’:’dos’}

Dictionaries

• Dictionaries are like bags – no order

29

>>> purse = {}
>>> purse[‘money’] = 12
>>> purse[‘candy’] = 3
>>> purse[‘tissues’] = 75
>>> print (purse)
{‘money’:12, ‘tissue’:75, ‘candy’:3}
>>> print (purse[‘candy’])
3
>>> >>> purse[‘candy’]=purse[‘candy’]+2
>>> print (purse)
{‘money’:12, ‘tissue’:75, ‘candy’:5}

Lists vs. Dictionaries

• Dictionaries are like lists except that they use
keys instead of numbers to look up values

30

>>> lst = list()
>>> lst.append(21)
>>> lst.append(180)
>>> print (lst)
[21,180]

>>> lst[0] = 23
>>> print (lst)
[23,180]

>>> ddd = dict()
>>> ddd[‘age’] = 21
>>> ddd[‘score’] = 90
>>> print (ddd)
{‘score’:90, ‘age’:21}

>>> ddd[‘age’] = 23
>>> print (ddd)
{‘score’:90, ‘age’:23}

Dictionary operations

• del statement removes a
key-value pair from a
dictionary

• We can also change the
value associated with a
key

• It is an error to reference
a key which is not in the
dictionary

31

>>> ddd = dict()
>>> ddd[‘age’] = 21
>>> ddd[‘score’] = 90
>>> print (ddd)
{‘age’:21, ‘score’:90}

>>> del ddd[‘age’]
>>> print (ddd)
{‘score’:90}

>>> print (ddd[‘height’])
KeyError: ‘height’

Dictionary methods

• dictName.keys() returns
a list of the keys that
appear

• dictName.values()
returns a list of the
values in the dictionary

• dictName.items() returns
both, in the form of a list
tuples – one for each
key-value pair

32

>>> ddd = {‘age’:21,‘score’:90}
>>> ddd.keys()
[‘age’,‘score’]

>>> ddd.values()
[21,90]

>>> ddd.items()
[(‘age’,21),(‘score’,90)]

Dictionary methods

• dictName.has_key() returns true if the key
appears in the dictionary

• We can also use the in operator to see if a key
is in the dictionary

33

>>> ddd = {‘age’:21,‘score’:90}
>>> ddd.has_key(‘age’)
True

>>> ddd.has_key(‘height’)
False

>>> ‘age’ in ddd
True

Dictionary methods

• dictName.get(key) returns the value if the key
appears in the dictionary

• dictName.get(key, 0) returns the value if the
key appears in the dictionary, 0 otherwise

34

counts = dict()

names = [‘csev’,’cwen’,’csev’,’zqian’,’cwen’]

for name in names:
counts[name] = counts.get(name,0) + 1

print (counts)

Dictionary example

35

counts = dict()

names = [‘csev’,’cwen’,’csev’,’zqian’,’cwen’]

for name in names:
if name not in counts:

counts[name] = 1
else:

counts[name] = counts[name] + 1

print (counts)

Iterate dictionaries

36

>>> counts = {‘chuck’ : 1, ‘fred’ : 42, ‘jan’ : 100}
>>> for key in counts:
. . . print key, counts[key]
. . .
jan 100
chuck 1
fred 42

Two iteration variables

• We loop through the key-value pairs in a
dictionary using two iteration variables

• Each iteration, the first variable is the key and
the second variable is the corresponding value
for the key

37

students = {‘name’:’alice’, ‘age’:20, ’gender’: ‘f’}

for k,v in students:
print (k,”:”,v)

Outputs:
name: alice
age: 20
gender: f

