f@s UNIVERSITY OF

ROBERT H.SMITH

SCHOOL OF BUSINESS

- [Essential Data Skills for Business Analytics

Lecture 5: Lists, Tuples, and Dictionaries

Decision, Operations & Information Technologies
Robert H. Smith School of Business
Spring, 2020

‘uoyih

K. Zhang BMGT 404

CAMARYLAND

ROBERT H.SMITH

e A list 1s a kind

A collection al

SCHOOL OF BUSINESS

| of collection

lows us to put many values in a

single “variab]
dscores =[50,

e”’
60, 90]

Afriends = [‘alice’, ‘bob’, ‘charle’]

’* @
ants OBERT H.SMITH
O VLVOF BUSINESS

e List constants are
surrounded by square SSSESESENEETEPEEVELS
brackets and the (1,23, 45]
elements in the list are GEdR SR TUPRGARIEUND

db [‘red’,’blue’]
Separated Dy cOmmas. NI LIRSSV

e Alist element can be [EEaSSiasSlll

: >>> print ([1,[3,4],37]1)
any Python object — 113,47, 371

even another list. >>> print (
[]

* Alist can be empty

4 @)UNIVE§§,iKN%

ements ROBERT H.SMITH

SCHOOL OF BUSINESS

* We can get at any single element 1n a list using
an 1index specified 1n square brackets

e Index starts from O

* Index must be integer

2 3

[1,3,45,10]
Index: 0 1

4 @)UNIVE§§,iKN%

ements ROBERT H.SMITH

SCHOOL OF BUSINESS

* If the index 1s negative value, it counts
backward from the end of the list

>>> % = [1,3,45,10]
9) -1

Index: -4

>>> print (x[-1])

10

UNIVERSITY OF

OOL OF BUSINESS

* The len() function takes a list as a parameter
and returns the number of elements in the list

e numbersl =[1, 3,45, 10]
e numbers2 =[1, [3,45], 10]

numbersl = [1,3,45,10]
print (len (numbersl))

numbers?2 = [1,[3,45],10]
print (len (numbers2))

@)UNIVE§§II}IN%

a b I e ROBERT H.SMITH

~ SCHOOL OF BUSINESS

* Lists are “mutable” — we can change an
element of a list using index operator

2 3

Index: 0 1

>>> x = [1,3,45,10]

s 0] - 33
% 3

Index: 0 1

UNIVERSITY OF

funCtiOn " ROBERT H. SMITH

JOOL OF BUSINESS

* The range(m) function returns a list of
numbers that range from zero to m-1

* The range(x, y) function returns a list of
numbers that range from x to y-1

* If x>y, returns an empty range

>>> print (list (range(4)))
[(0,1,2,3]

>>> print (list(range(3,9)))
[3/ 4/ 5/ 6/7/8]

>>> print (list(range(4,1)))
[]

NIVERSITY OF

MARYLAND

erShip ROBERT H.SMITH

OOL OF BUSINESS

* in1s a boolean operator that tests membership
In a sequence.

e not in to test whether an element 1s not a
member of a list

* They do not modify the list

>>> fruit = [‘apple’,’banana’,’orange’]
>>> ‘banana’' 1in fruilt
True

>>> x = [3,4,5,0,7,8]
>>> 2 not 1in X
True

for loops

BERT H.SMITH

DL OF BUSINESS

* The generalized syntax of a for loop with lists

1S:

for variable in ListName:

Statements

(“average 1s:

1=0

while i<len(ListName):
variable = ListName|1]
Statements
1=1+1

X:

range (3, 6)

sum = 0.0

1 =0
While i<len (X) :
sum += x[1]
= i+1

144

, avg)

144

“average 1s: , avqg)

MARYLAND

tiOnS SBERT H.SMITH

OL OF BUSINESS

* We can create a new list by adding two
existing lists together

UNIVERSITY OF

iOnS " ROBERT H.SMITH

HOOL OF BUSINESS

* Lists can be using

ListName[x:y] returns a
blist f 18 : >>> a = [9,41,12,3,77,19]
sublist from index x to SUNNTNSS
index y-1 [41,12]

dListName[:x] returns a SSSEN—.
sublist from index 0 to [EECEEEEIE)
index x-1

>>> al[3:]
AListName[x:] returns a [EEREFESY

sublist from 1ndex x to the
end

UNIVERSITY OF

W MARYLAND
[]
tions ROBERT H.SMITH

OOL OF BUSINESS

* Using slices : to delete list

clements 1s error prone [9,41,12,3,77,19]

- >>> a[l:3] =
* Python provides an >>> print a

alternative that more [9,3,77,19]
readable o> del alll

>>> print (a)

ddel listNamel[i] delete the [EEEEEES
element with index 1

: -y >>> del al:2]
del listName[i:j] delete >>> print (a)

elements with index from 1 |
to j-1

UNIVERSITY OF

ds (1) - ROBERT H.SMITH

JOOL OF BUSINESS

* Building a list from scratch

(dWe can create an empty list and then add elements
using the append method

The list stays in order and new elements are

print
[‘Ybook’, 30]

- ROBERT H.SMITH

OOL OF BUSINESS

* A list 1s an ordered sequence
A list can be sorted (i.e., change its order)
The sort method means “sort yourself”
>>> a = [‘Joseph’,’Glenn’,’Sally’]
>>> ()

>>> print (a)
[‘\Glenn’ ,"Joseph’,"Sally’]

>>> print (a[l])
Joseph

unctions

a = [3,44,13,11,77,15]
print ()

print

print

print

print

NIVERSITY OF

ARYLAND

OF BUSINESS

List ()

while True:
inputs = input (‘Enter a number: ')

1f inputs == ‘done’:
break

value = float (inputs)

numList.append (value)

sum (numList) / len (numList)

(‘Average: ' ,average)

VERSITY OF

ARYLAND

H.SMITH

)F BUSINESS

UNIVERSITY OF

- ROBERT H. SMITH

JOOL OF BUSINESS

* Nested lists are often used to represent
matrices.
Bt
7

>>> matrix = [[1,2,3]1,14,5,6]1,17,8,9]]
>>> matrix[1]
(4,5, 0]

Qo tn o
0w m W

>>> matrix[1l] [2]
6

ﬂ UNIVERSITY OF
WMARYLAND
ROBERT H.SMITH

SCHOOL OF BUSINESS

19

UNIVE§§IIATA;(N(])5

- ROBERT H.SMITH

SCHOOL OF BUSINESS

* A tuple 1s similar to a list except that it 1s
immutable. (The elements of a tuple can not be

moditied)

* A tuple 1s a comma-separated list of values.
Parenthesis 1s not necessary, but
recommended.

>>> tuplel

>>> tuple?
>>>

not to do with tuples

>>> x = (3, 2, 1)
>>> % ()

Traceback:AttributeError:

attribute 'sort’
>>> x (5)

Traceback:AttributeError:

attribute 'append’
>>> x ()

Traceback:AttributeError:

attribute 'reverse'’
>>>

'"tuple' object has no

'"tuple' object has no

'"tuple' object has no

' gfé\} UNIVERSITY OF
efficient R

* Since Python does not have to build tuple
structures to be modifiable, they are simpler
and more efficient in terms of memory use and
performance than lists

* So 1n our program when we are making
“temporary variables”, we prefer tuple over
lists

22

@UNIVE$iXN%

ROBERT H.SMITH

SCHOOL OF BUSINESS

* To create a tuple with a single element, we have
to include the final comma

U>>>a tuple=(‘a’,)
* All slice operation are similar to lists
* Even we can not modity the elements of a tuple,
we can replace it with a different tuple
d>>>a_tuple = (‘a’,‘b’, ‘c’)
>>>a_tuple = (‘A’,) + a_tuple[1:]
>>> print (a_tuple)
BN (CATSIHEYGE)

23

UNIVERSITY OF

° ‘)W MARYLAND
d asmgnment ROBERT H. SMITH

OOL OF BUSINESS

* We can put a tuple on the left hand side of an
assignment statement

* We can even omit the parenthesis

>>> (x, y) =
>>> print

7

CIMARYLANID

RT H.SMITH

OL OF BUSINESS

e comparable

* The comparison operators work with tuples

and other sequences 1f the first item 1s equal,
Python goes on to the next element, and so on,

until 1t finds elements that differ.

>>> (0, 1, 2) < (5, 1, 2)
True

>>> (0, 1, 2000000) <
True

>>> ('Jones', 'Sally' < ('Jones', 'Sam')
True
>>> ('Jones', 'Sally') > ('Adams', 'Sam')
True

UNIVERSITY OF

m be rs * ROBERT H.SMITH

HOOL OF BUSINESS

e The random module contains a function called
random that returns a floating point number

between 0.0 and 1.0.

>>> 1mport random

>>> X = random.random ()
>>> print (x)
0.15156642489

>>> y = random.random ()
>>> print (y)
0.32856673042

@UNIVE$iKN%
ROBERT H.SMITH

SCHOOL OF BUSINESS

27

- ROBERT H.SMITH

SCHOOL OF BUSINESS

* The compound types we have learned: lists
and tuples — use 1ntegers as indices.

* Dictionaries are similar to these type except
that they can use any immutable type as an
index.

* Create an empty dictionary

deng2sp = {} >>> eng2sp = {}
. >>> engZspl[‘one’] ‘uno’
ElengZSp = dlCt() >>> eng2sp[‘two’] ‘dos’

>>> print (eng2sp)
{‘one’ :"uno’, ‘two’:"dos’}

* Dictionaries are like bags — no order

>>>
>>>
>>>
>>>
>>>

purse = {}

purse [‘money’] 12
purse [‘candy’]

purse[‘tissues’] = 75
print (purse)

{ ‘money’ :12, ‘tissue’:75, ‘candy’ :3}

>>>
3

>>>
>>>

print (purse[‘candy’])

>>> purse [‘candy’]=purse|[‘candy’]+2
print (purse)

{ ‘money’ :12, ‘tissue’:75, ‘candy’ :5}

RSITY OF

IARYLAND

BUSINESS

IVERSITY OF

@ MARYLAND

RT H.SMITH

OL OF BUSINESS

ictionaries

* Dictionaries are like lists except that they use
instead of numbers to look up values

>>> 1st = list()
>>> lst.append(21)
>>> 1st.append (180)
>>> print (lst)

>>>]
[21,180] print (ddd)

{ ‘score’ :

]
>>> print
[23,180]

>>> ddd [
>>> print
{ ‘score’ :90,

OperathnS OBERT H.SMITH

OL OF BUSINESS

e del statement removes a

key-value pair from a =)
>>> ddd[‘age’ = 21
] =

dlCthIlal‘y >>> ddd[‘score’ 90

>>> print (ddd)
{‘age’ :21, ‘score’:

* We can also change the

value associated with a
>>> del ddd][‘age’]

key >>> print (ddd)

. { ‘score’ :90}

e [t is an error to reference
a key which 1s not in the |[gediZeaaiCECIREE RS

dictionary

UNIVERSITY OF

methods " ROBERT H.SMITH

JOOL OF BUSINESS

* dictName.keys() returns

a list of the keys that >>> ddd = {‘age’:21, ‘score’:90)
>>> ddd. ()
appear [‘age’ , ‘score’]
* dictName.values() os 4dd. 0
returns a list of the [21,90]

values 1n the dictionary SSSEEEEUERSSENg
[(‘age’,21), (Yscore’, 90)]

e dictName.items() returns
both, in the form of a list
tuples — one for each
key-value pair

methods " ROBERT H.SMITH

HOOL OF BUSINESS

* dictName.has_key() returns true if the key
appears 1n the dictionary

* We can also use the in operator to see if a key
1s 1n the dictionary

{‘age’ :21, ‘score’ : 90}
(‘age’)

UNIVERSITY OF

MARYLAND

methods OBERT H.SMITH

OOL OF BUSINESS

* dictName.get(key) returns the value 1f the key
appears in the dictionary

* dictName.get(key, 0) returns the value 1f the
key appears 1n the dictionary, O otherwise

counts = dict ()
names = [‘csev’,’cwen’,’csev’,’zgian’,’'cwen’]

for name in names:
counts|[name] = counts.

print (counts)

ary example

BUSINESS

counts = dict ()
names = [‘csev’,’cwen’,’csev’,’zgian’, ' cwen’]

for name in names:
if name not i1n counts:

counts|[name] = 1
else:
counts|[name] = counts|[name] + 1

print (counts)

ctionaries s

OOL OF BUSINESS

>>> = {‘chuck’: 1, ‘fred’ : 42, ‘jan’ : 100}
>>> for key in
print key, [key]

J

an 100
chuck 1
fred 42

MARYLAND

tion variables SBERT H. SMITH

OL OF BUSINESS

* We loop through the key-value pairs in a
dictionary using iteration variables

* Each iteration, the first variable 1s the key and
the second variable 1s the corresponding value
tfor the key

students = { ‘name’ :"alice’, ‘age’:20, "gender’: ‘f'}

for k,v in students:
print (k,”:”,

Outputs:
name: alice

age: 20
gender: f

