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e A list 1s a kind

A collection al
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| of collection

lows us to put many values in a

single “variab]
dscores =[50,

e”’
60, 90]

Afriends = [‘alice’, ‘bob’, ‘charle’]
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e List constants are
surrounded by square SSSESESENEETEPEEVELS
brackets and the (1,23, 45]
elements in the list are GEdR SR TUPRGARIEUND

db [‘red’,’blue’]
Separated Dy cOmmas. NI LIRSSV

e Alist element can be [EEaSSiasSlll

: >>> print ([1,[3,4],37]1)
any Python object — 113,47, 371

even another list. >>> print (
[ ]

* Alist can be empty
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* We can get at any single element 1n a list using
an 1index specified 1n square brackets

e Index starts from O

* Index must be integer

2 3

[1,3,45,10]
Index: 0 1
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* If the index 1s negative value, it counts
backward from the end of the list

>>> % = [1,3,45,10]
9 ) -1

Index: -4

>>> print (x[-1])

10
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* The len() function takes a list as a parameter
and returns the number of elements in the list

e numbersl =[1, 3,45, 10]
e numbers2 =[1, [3,45], 10]

numbersl = [1,3,45,10]
print (len (numbersl))

numbers?2 = [1,[3,45],10]
print (len (numbers2))
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* Lists are “mutable” — we can change an
element of a list using index operator

2 3

Index: 0 1

>>> x = [1,3,45,10]

s 0] - 33
% 3

Index: 0 1
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* The range(m) function returns a list of
numbers that range from zero to m-1

* The range(x, y) function returns a list of
numbers that range from x to y-1

* If x>y, returns an empty range

>>> print (list (range(4)))
[(0,1,2,3]

>>> print (list(range(3,9)))
[3/ 4/ 5/ 6/7/8]

>>> print (list(range(4,1)))
[ ]




NIVERSITY OF

MARYLAND

erShip ROBERT H.SMITH

OOL OF BUSINESS

* in1s a boolean operator that tests membership
In a sequence.

e not in to test whether an element 1s not a
member of a list

* They do not modify the list

>>> fruit = [ ‘apple’,’banana’,’orange’]
>>> ‘banana’' 1in fruilt
True

>>> x = [3,4,5,0,7,8]
>>> 2 not 1in X
True
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* The generalized syntax of a for loop with lists

1S:

for variable in ListName:

Statements

(“average 1s:

1=0

while i<len(ListName):
variable = ListName|1]
Statements
1=1+1

X:

range (3, 6)

sum = 0.0

1 =0
While i<len (X) :
sum += x[1]
= i+1

144

, avg)

144

“average 1s: , avqg)
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* We can create a new list by adding two
existing lists together
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* Lists can be using

ListName[x:y] returns a
blist f 18 : >>> a = [9,41,12,3,77,19]
sublist from index x to  SUNNTNSS
index y-1 [41,12]

dListName[:x] returns a SSSEN—.
sublist from index 0 to  [EECEEEEIE)
index x-1

>>> al[3:]
AListName[x:] returns a  [EEREFESY

sublist from 1ndex x to the
end
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* Using slices : to delete list

clements 1s error prone [9,41,12,3,77,19]

- >>> a[l:3] =
* Python provides an >>> print a

alternative that more [9,3,77,19]
readable o> del alll

>>> print (a)

ddel listNamel[i] delete the [EEEEEES
element with index 1

: -y >>> del al:2]
del listName[i:j] delete >>> print (a)

elements with index from 1 |
to j-1
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* Building a list from scratch

(dWe can create an empty list and then add elements
using the append method

The list stays in order and new elements are

print
[ ‘Ybook’, 30]
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* A list 1s an ordered sequence
A list can be sorted (i.e., change its order)
The sort method means “sort yourself”
>>> a = [‘Joseph’,’Glenn’,’Sally’]
>>> ()

>>> print (a)
[ ‘\Glenn’ ,"Joseph’,"Sally’]

>>> print (a[l])
Joseph




unctions

a = [3,44,13,11,77,15]
print ( )

print

print

print

print
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List ()

while True:
inputs = input (‘Enter a number: ')

1f inputs == ‘done’:
break

value = float (inputs)

numList.append (value)

sum (numList) / len (numList)

(‘Average: ' ,average)
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* Nested lists are often used to represent
matrices.
Bt
7

>>> matrix = [[1,2,3]1,14,5,6]1,17,8,9]]
>>> matrix[1]
(4,5, 0]

Qo tn o
0w m W

>>> matrix[1l] [2]
6
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* A tuple 1s similar to a list except that it 1s
immutable. (The elements of a tuple can not be

moditied)

* A tuple 1s a comma-separated list of values.
Parenthesis 1s not necessary, but
recommended.

>>> tuplel

>>> tuple?
>>>




not to do with tuples

>>> x = (3, 2, 1)
>>> % ()

Traceback:AttributeError:

attribute 'sort’
>>> x (5)

Traceback:AttributeError:

attribute 'append’
>>> x ()

Traceback:AttributeError:

attribute 'reverse'’
>>>

'"tuple' object has no

'"tuple' object has no

'"tuple' object has no
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* Since Python does not have to build tuple
structures to be modifiable, they are simpler
and more efficient in terms of memory use and
performance than lists

* So 1n our program when we are making
“temporary variables”, we prefer tuple over
lists

22
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* To create a tuple with a single element, we have
to include the final comma

U>>>a tuple=(‘a’,)
* All slice operation are similar to lists
* Even we can not modity the elements of a tuple,
we can replace it with a different tuple
d>>>a_tuple = (‘a’,‘b’, ‘c’)
>>>a_tuple = (‘A’,) + a_tuple[1:]
>>> print (a_tuple)
BN (CATSIHEYGE)

23
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* We can put a tuple on the left hand side of an
assignment statement

* We can even omit the parenthesis

>>> (x, y) =
>>> print

7
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e comparable

* The comparison operators work with tuples

and other sequences 1f the first item 1s equal,
Python goes on to the next element, and so on,

until 1t finds elements that differ.

>>> (0, 1, 2) < (5, 1, 2)
True

>>> (0, 1, 2000000) <
True

>>> ( 'Jones', 'Sally' < ('Jones', 'Sam')
True
>>> ( 'Jones', 'Sally') > ('Adams', 'Sam')
True
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e The random module contains a function called
random that returns a floating point number

between 0.0 and 1.0.

>>> 1mport random

>>> X = random.random ()
>>> print (x)
0.15156642489

>>> y = random.random ()
>>> print (y)
0.32856673042
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* The compound types we have learned: lists
and tuples — use 1ntegers as indices.

* Dictionaries are similar to these type except
that they can use any immutable type as an
index.

* Create an empty dictionary

deng2sp = {} >>> eng2sp = {}
. >>> engZspl[ ‘one’ ] ‘uno’
ElengZSp = dlCt() >>> eng2sp[ ‘two’ ] ‘dos’

>>> print (eng2sp)
{‘one’ :"uno’, ‘two’:"dos’}




* Dictionaries are like bags — no order

>>>
>>>
>>>
>>>
>>>

purse = {}

purse [ ‘money’ ] 12
purse [ ‘candy’ ]

purse[ ‘tissues’] = 75
print (purse)

{ ‘money’ :12, ‘tissue’:75, ‘candy’ :3}

>>>
3

>>>
>>>

print (purse[ ‘candy’])

>>> purse [ ‘candy’ ]=purse|[ ‘candy’ ]+2
print (purse)

{ ‘money’ :12, ‘tissue’:75, ‘candy’ :5}
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* Dictionaries are like lists except that they use
instead of numbers to look up values

>>> 1st = list()
>>> lst.append(21)
>>> 1st.append (180)
>>> print (lst)

>>> ]
[21,180] print (ddd)

{ ‘score’ :

]
>>> print
[23,180]

>>> ddd [
>>> print
{ ‘score’ :90,
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e del statement removes a

key-value pair from a = )
>>> ddd[ ‘age’ = 21
] =

dlCthIlal‘y >>> ddd[ ‘score’ 90

>>> print (ddd)
{‘age’ :21, ‘score’:

* We can also change the

value associated with a
>>> del ddd][ ‘age’ ]

key >>> print (ddd)

. { ‘score’ :90}

e [t is an error to reference
a key which 1s not in the |[gediZeaaiCECIREE RS

dictionary
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* dictName.keys() returns

a list of the keys that >>> ddd = {‘age’:21, ‘score’:90)
>>> ddd. ()
appear [ ‘age’ , ‘score’ ]
* dictName.values() os 4dd. 0
returns a list of the [21,90]

values 1n the dictionary SSSEEEEUERSSENg
[ (‘age’,21), (Yscore’, 90) ]

e dictName.items() returns
both, in the form of a list
tuples — one for each
key-value pair
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* dictName.has_key() returns true if the key
appears 1n the dictionary

* We can also use the in operator to see if a key
1s 1n the dictionary

{‘age’ :21, ‘score’ : 90}
(‘age’)
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* dictName.get(key) returns the value 1f the key
appears in the dictionary

* dictName.get(key, 0) returns the value 1f the
key appears 1n the dictionary, O otherwise

counts = dict ()
names = [‘csev’,’cwen’,’csev’,’zgian’,’'cwen’]

for name in names:
counts|[name] = counts.

print (counts)
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counts = dict ()
names = [‘csev’,’cwen’,’csev’,’zgian’, ' cwen’]

for name in names:
if name not i1n counts:

counts|[name] = 1
else:
counts|[name] = counts|[name] + 1

print (counts)
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>>> = {‘chuck’: 1, ‘fred’ : 42, ‘jan’ : 100}
>>> for key in
print key, [key]

J

an 100
chuck 1
fred 42
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* We loop through the key-value pairs in a
dictionary using iteration variables

* Each iteration, the first variable 1s the key and
the second variable 1s the corresponding value
tfor the key

students = { ‘name’ :"alice’, ‘age’:20, "gender’: ‘f'}

for k,v in students:
print (k,”:”,

Outputs:
name: alice

age: 20
gender: f




