
Lecture 7: Strings in Python

Decision, Operations & Information Technologies
Robert H. Smith School of Business
Spring, 2020

K. Zhang BMGT404

The string data type

• Text is represented in programs by the string
data type.

• A string is a sequence of characters enclosed
within quotation marks (") or apostrophes (')

2

The string data type

• >>> str1 = "Hello"
• >>> str2 = 'spam'
• >>> print (str1, str2)
• Hello spam
• >>> type(str1)
• <class 'str'>
• >>> type(str2)
• <class 'str'>

3

The string data type

4

• Getting a string as input
>>> firstName = input("Please enter your name: ")
Please enter your name: John

>>> print ("Hello", firstName)
Hello John

The string data type

• We can access the individual characters in a
string through indexing.

• The positions in a string are numbered from
the left, starting with 0.

• The general form is <string_name>[expr],
where the value of expr determines which
character is selected from the string.

5

The string data type

>>> greet = "Hello Bob"
>>> greet[0]
'H'
>>> print (greet[0], greet[2], greet[4])
H l o
>>> x = 8
>>> print (greet[x – 2])
B 6

H e l l o B o b

 0 1 2 3 4 5 6 7 8

The string data type

• In a string of n characters, the last character is at
position n-1 since we start counting with 0.

• We can index from the right side using negative
indexes.
>>> greet[-1]
'b'
>>> greet[-3]
'B' 7

H e l l o B o b

 0 1 2 3 4 5 6 7 8

The string data type

8

• Indexing returns a string containing a
single character from a larger string.
• We can also access a contiguous

sequence of characters, called a
substring, through a process called
slicing.

The string data type

9

• Slicing:
<string>[<start>:<end>]
• start and end should both be integers
• The slice contains the substring

beginning at position start and runs
up to but doesn’t include the
position end.

The string data type

>>> greet[0:3]
'Hel'
>>> greet[5:9]
' Bob'
>>> greet[:5]
'Hello'
>>> greet[5:]
' Bob'
>>> greet[:]
'Hello Bob' 10

H e l l o B o b

 0 1 2 3 4 5 6 7 8

The string data type

11

• If either expression is missing, then the
start or the end of the string are used.
• Can we put two strings together into a

longer string?
• Concatenation “glues” two strings

together (+)
• Repetition builds up a string by multiple

concatenations of a string with itself (*)

The string data type

12

>>> "spam" + "eggs"
'spameggs'
>>> "Spam" + "And" + "Eggs"
'SpamAndEggs'
>>> 3 * "spam"
'spamspamspam'
>>> "spam" * 5
'spamspamspamspamspam'
>>> (3 * "spam") + ("eggs" * 5)
'spamspamspameggseggseggseggseggs'

The string data type

13

Operator Meaning
+ Concatenation
* Repetition
<string>[] Indexing
<string>[:] Slicing
len(<string>) Length
for <var> in <string> Iteration through characters

String methods

14

• s.capitalize() – Copy of s with only the first
character capitalized

• s.title() – Copy of s; first character of each
word capitalized

• s.center(width) – Center s in a field of given
width

• s.count(sub) – Count the number of
occurrences of sub in s

String methods

15

• s.find(sub) – Find the first position where sub
occurs in s

• s.join(list) – Concatenate list of strings into
one large string using s as separator.

• s.ljust(width) – Like center, but s is left-
justified

• s.lower() – Copy of s in all lowercase letters
• s.lstrip() – Copy of s with leading whitespace

removed

String methods

16

• s.replace(oldsub, newsub) – Replace occurrences of
oldsub in s with newsub

• s.rfind(sub) – Like find, but returns the right-most
position

• s.rjust(width) – Like center, but s is right-justified
• s.rstrip() – Copy of s with trailing whitespace

removed
• s.split() – Split s into a list of substrings
• s.upper() – Copy of s; all characters converted to

uppercase

