

BIG DATA and AI for business

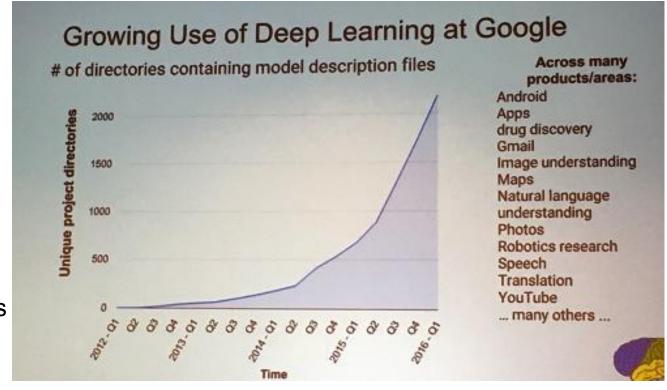
Deep Learning (1)

Decisions, Operations & Information Technologies Robert H. Smith School of Business Fall, 2020

Deep learning attracts lots of attention.

I believe you have seen lots of exciting results

before.



Deep learning trends at Google. Source: SIGMOD/Jeff Dean

We mainly focus on the basic techniques.

Introduction to Deep Learning

Outline

Introduction of Deep Learning

"Hello World" for Deep Learning

Tips for Deep Learning

Machine Learning ≈ Looking for a Function

Speech Recognition

$$f($$
)= "How are you"

• Image Recognition

• Playing Go $^{f(}$

• Dialogue System
$$f(\text{"Hi"})=\text{"Hello"}$$

(what the user said) (system response)

Image Recognition:

Framewor

A set of function

Model

$$f_1, f_2 \cdots$$

$$f_1($$

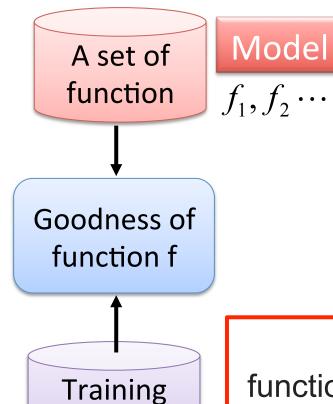
$$f_2($$

$$f_1$$

$$f_2($$

Image Recognition:

Framewor



Data

$$f_1($$
 $)=$ "cat" $f_2($ $)=$ "money" $f_1($ $)=$ "dog" $f_2($ $)=$ "snake"

Supervised Learning

function input:

function

Ulithlit.

"monkey"

"cat

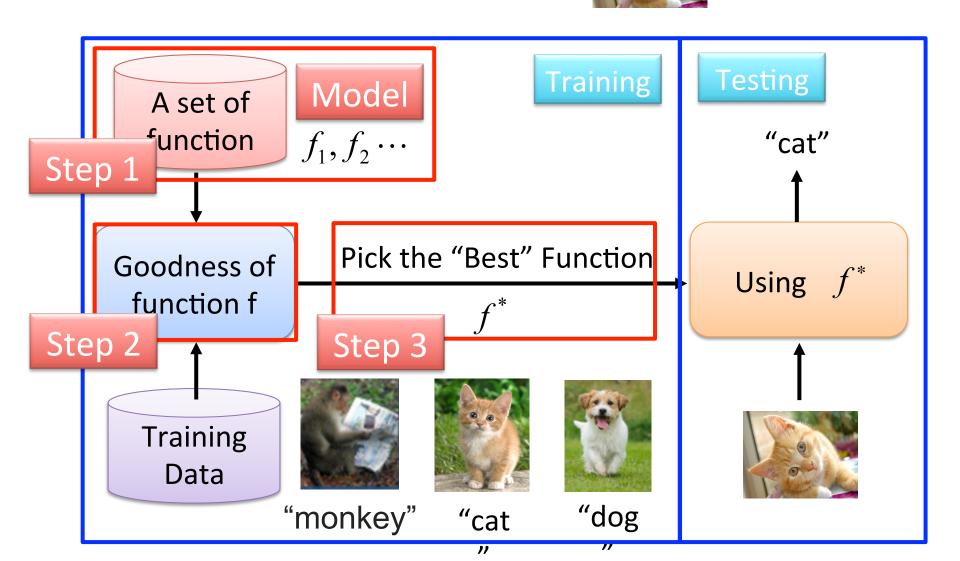
"dog

"

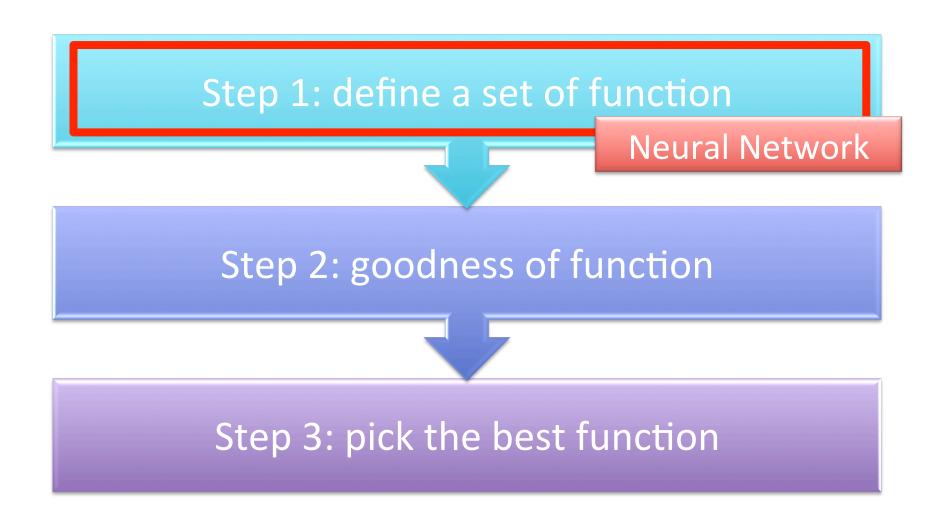
Image Recognition:

Framework

$$f($$
 $)=$ "cat"



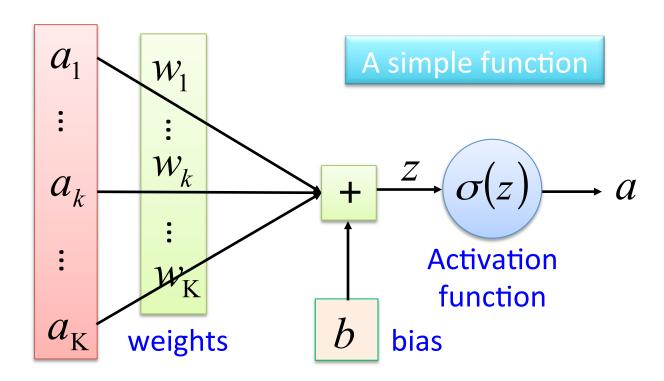
Three Steps for Deep Learning



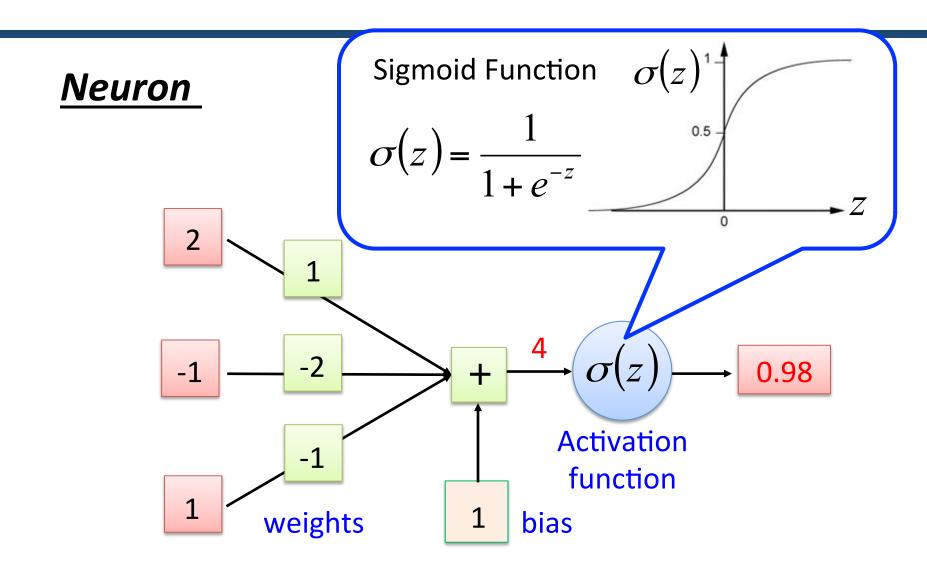
Neural Network

Neuron

$$z = a_1 w_1 + \dots + a_k w_k + \dots + a_K w_K + b$$

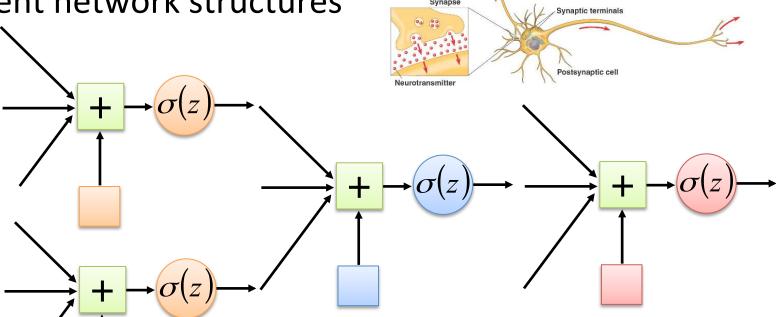


Neural Network



Neural Network

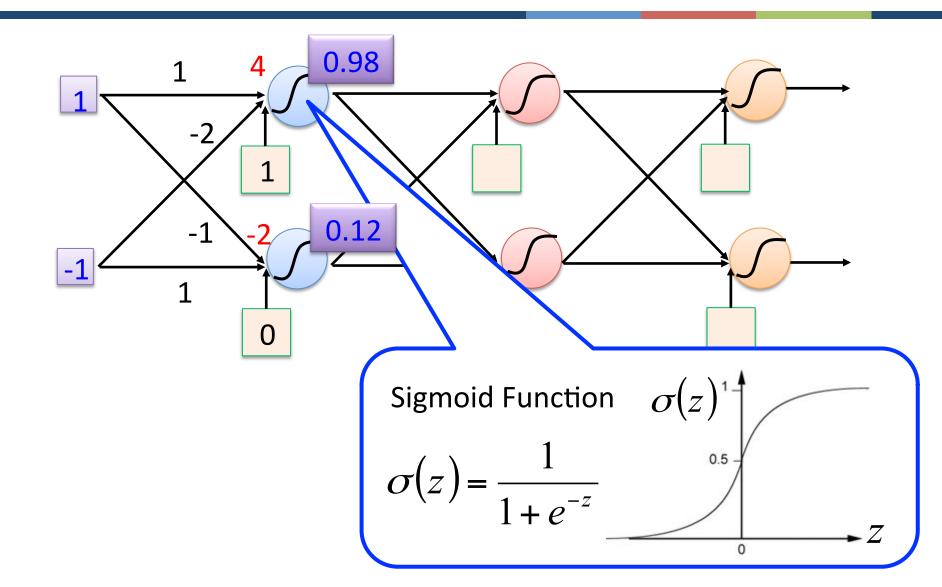
Different connections lead to different network structures

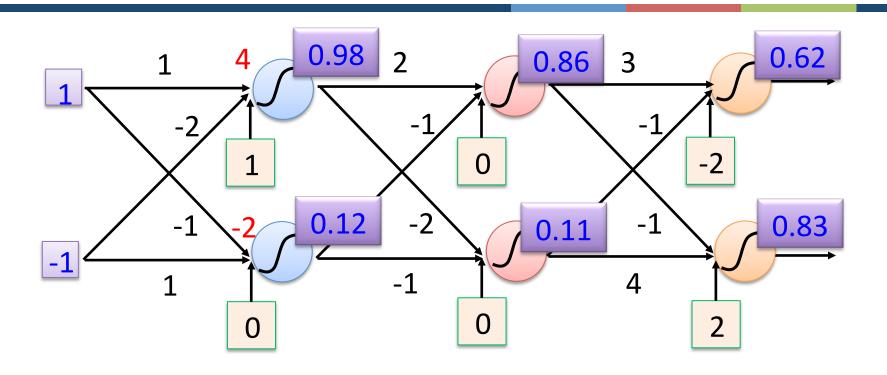


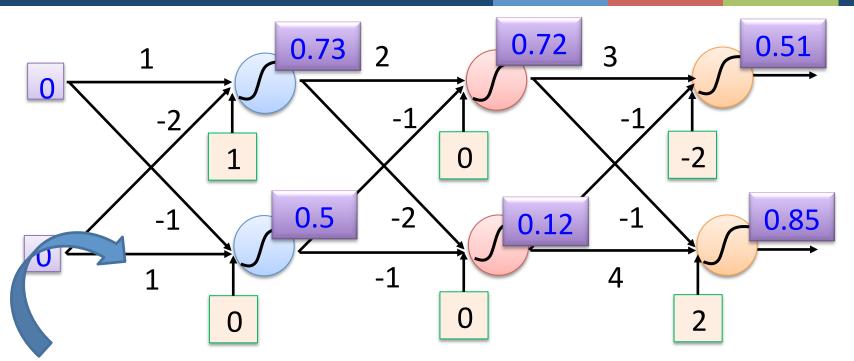
The neurons have different values of weights and biases.

Presynaptic

Weights and biases are network parameters θ







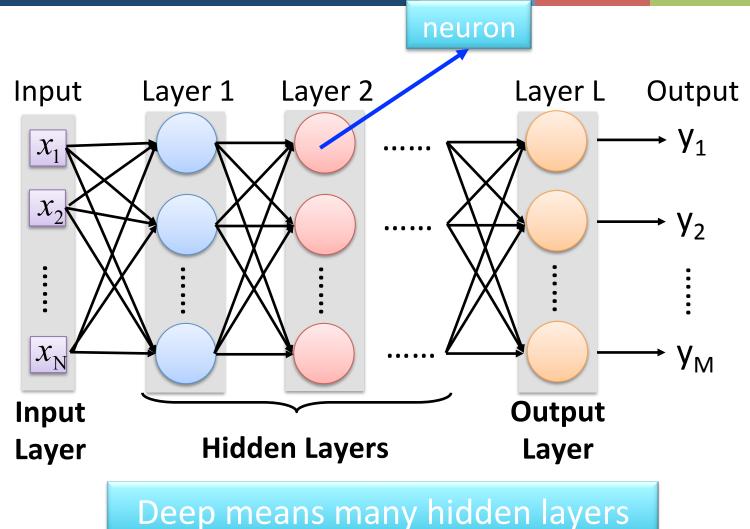
This is a function.

$$f([\blacksquare 1@-1]) = [\blacksquare 0.62@0.88] \blacksquare 0.00] = [\blacksquare 0.51@0.88]$$

Input vector, output vector

Given parameters θ , define a function

Given network structure, define *a function set*



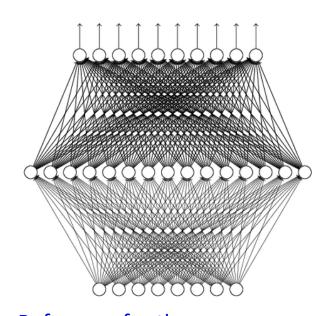
Why Deep? Universality Theorem

Any continuous function f

$$f: \mathbb{R}^N \to \mathbb{R}^M$$

Can be realized by a network with one hidden layer

(given **enough** hidden neurons)



Reference for the reason:
http://
neuralnetworksanddeeplearning.com/chap4.html

Why "Deep" neural network not "Fat" neural network?

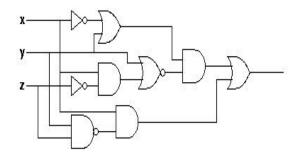
Why Deep? Analogy

Logic circuits

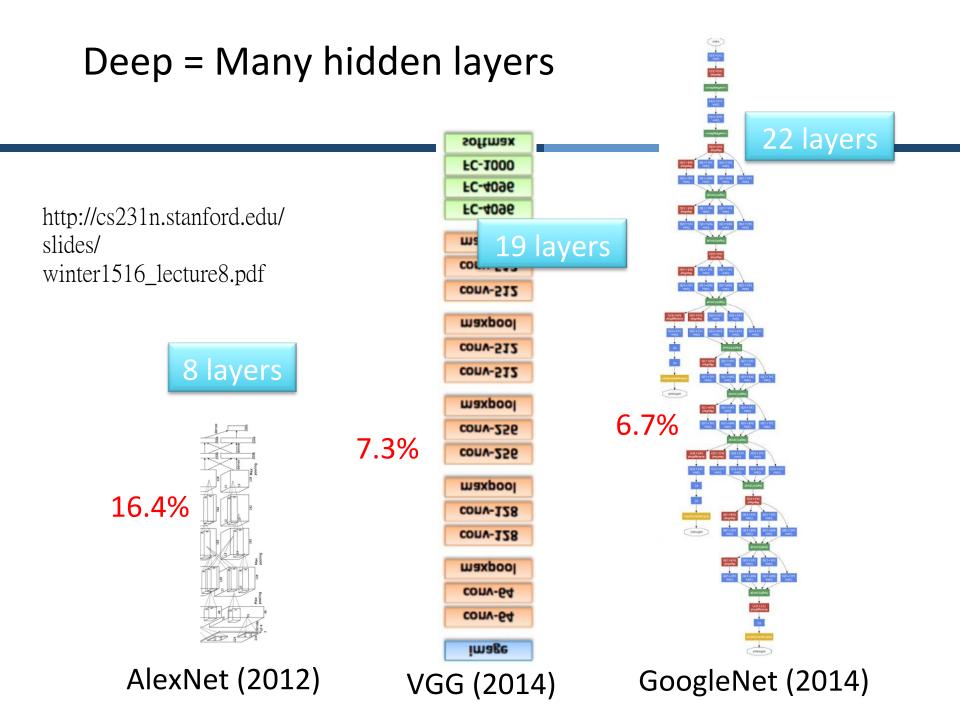
- Logic circuits consists of gates
- A two layers of logic gates can represent any Boolean function.
- Using multiple layers of logic gates to build some functions are much simpler

Neural network

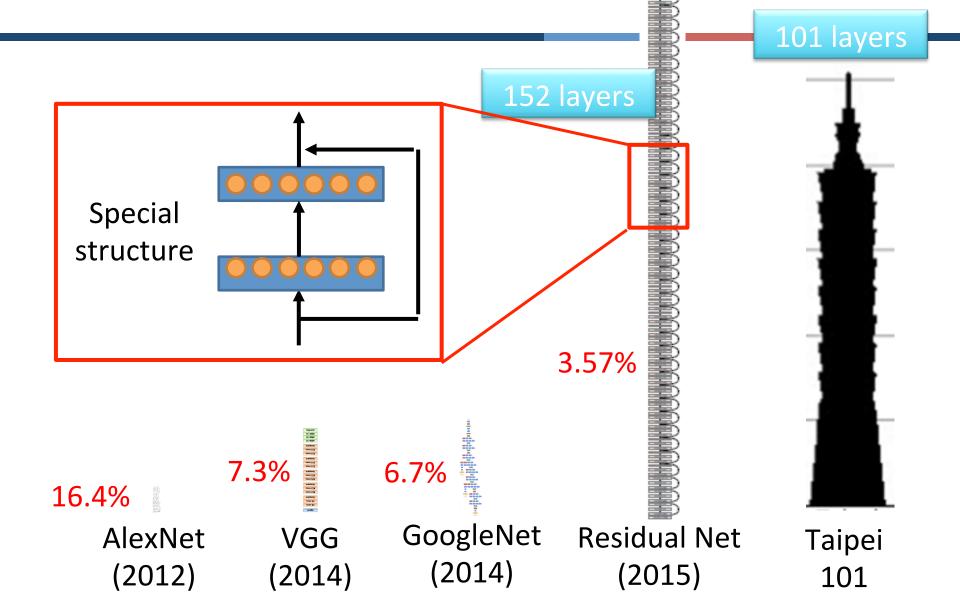
- Neural network consists of neurons
- A hidden layer network can represent any continuous function.
- Using multiple layers of neurons to represent some functions are much simpler



More reason: https://www.youtube.com/watch? v=XsC9byQkUH8&list=PLJV_el3uVTsPy9oCRY3 0oBPNLCo89yu49&index=13



Deep = Many hidden layers



Output Layer

Softmax layer as the output layer

Ordinary Layer

$$z_1 \longrightarrow \sigma \longrightarrow y_1 = \sigma(z_1)$$

$$z_2 \longrightarrow \sigma \longrightarrow y_2 = \sigma(z_2)$$

$$z_3 \longrightarrow \sigma \longrightarrow y_3 = \sigma(z_3)$$

In general, the output of network can be any value.

May not be easy to interpret

Output Layer

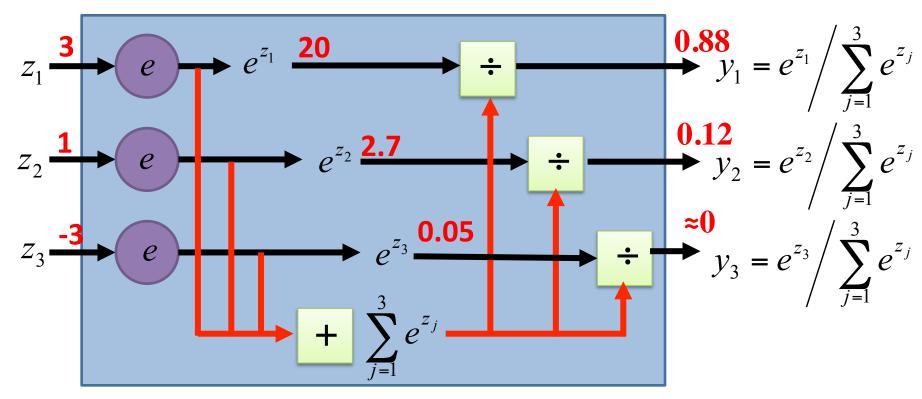
Softmax layer as the output layer

Probability:

■ $1 > y_i > 0$

$$\blacksquare \sum_i y_i = 1$$

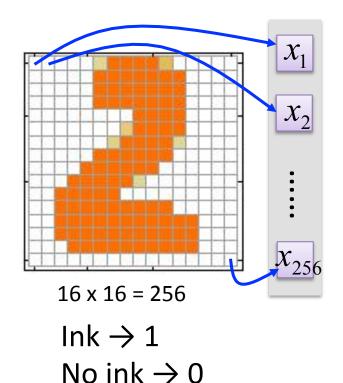
Softmax Layer



Example Application

Input

Output

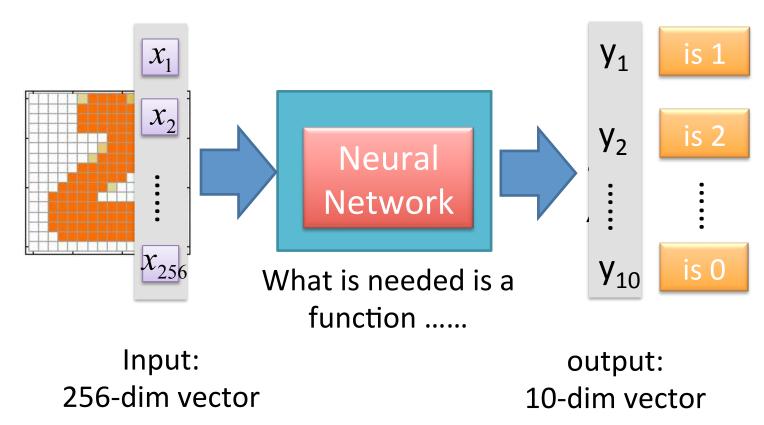




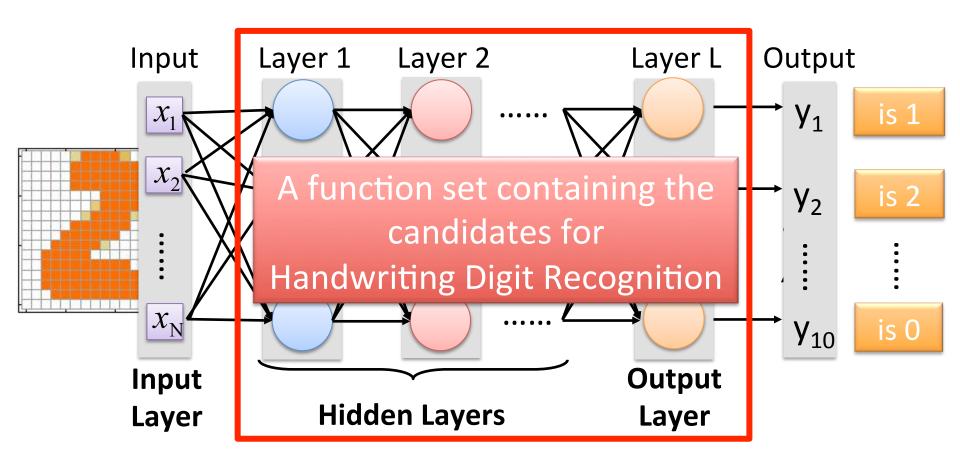
Each dimension represents the confidence of a digit.

Example Application

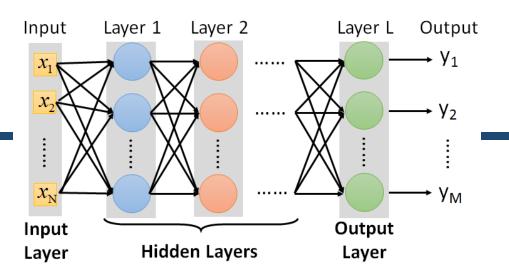
Handwriting Digit Recognition



Example Application



You need to decide the network structure to let a good function in your function set.



 Q: How many layers? How many neurons for each layer?

Trial and Error

Intuition

Q: Can we design the network structure?

Convolutional Neural Network (CNN) in the next lecture

+

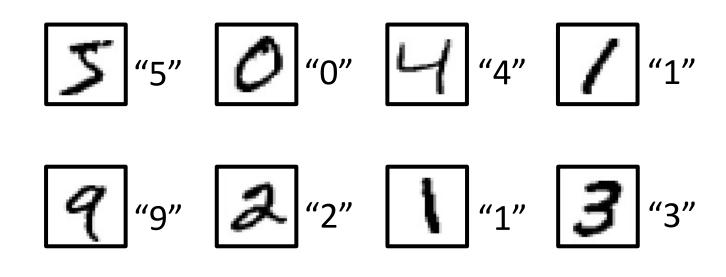
- Q: Can the structure be automatically determined?
 - Yes, but not widely studied yet.

Three Steps for Deep Learning

Step 1: define a set of function Step 2: goodness of function Step 3: pick the best function

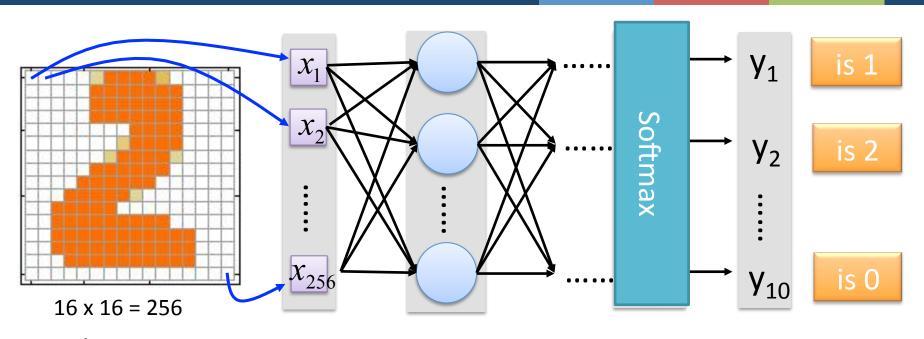
Training Data

Preparing training data: images and their labels



The learning target is defined on the training data.

Learning Target



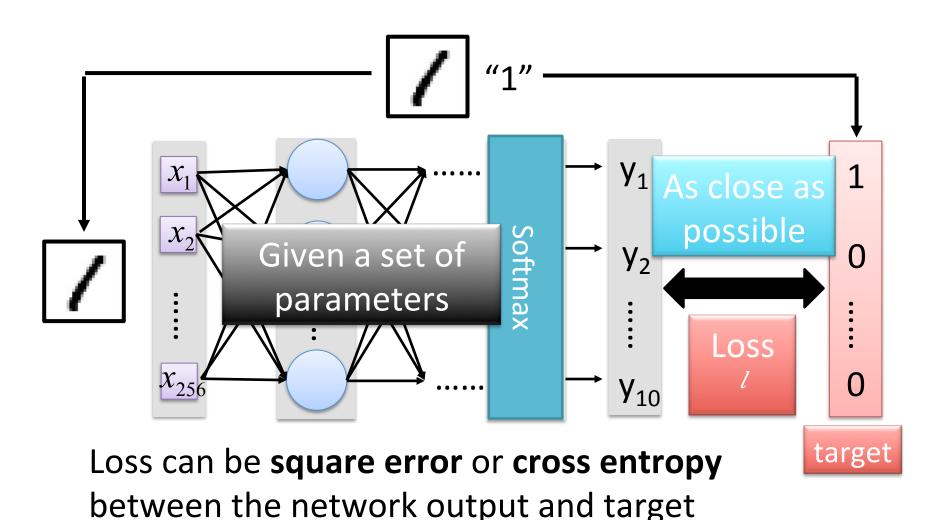
Ink \rightarrow 1 No ink \rightarrow 0

The learning target is

Input: y_1 has the maximum value

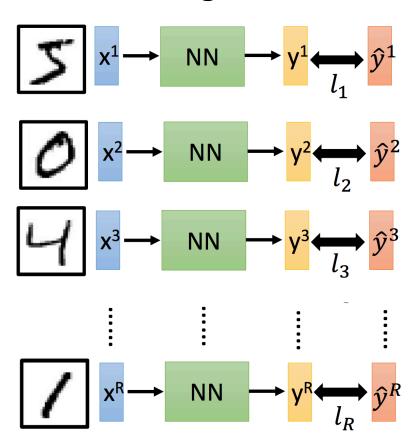
Input: $|\mathbf{A}| \Rightarrow y_2$ has the maximum value

A good function should make the loss of all examples as small as possible.



Total Loss

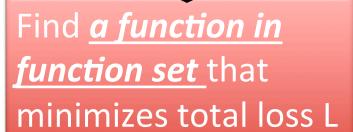
For all training data ...



Total Loss:

$$L = \sum_{r=1}^{R} l_r$$

As small as possible



Find <u>the network</u>

parameters en that

minimize total loss L

Three Steps for Deep Learning

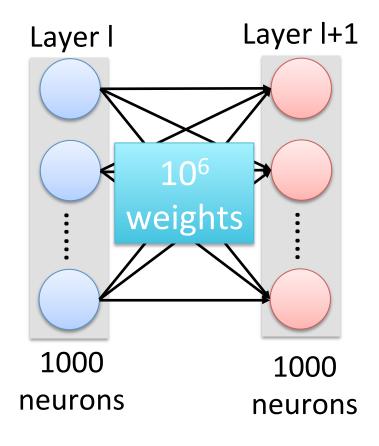
Step 1: define a set of function Step 2: goodness of function Step 3: pick the best function

How to pick the best function

Find network parameters of that minimize total loss L

Enumerate all possible values

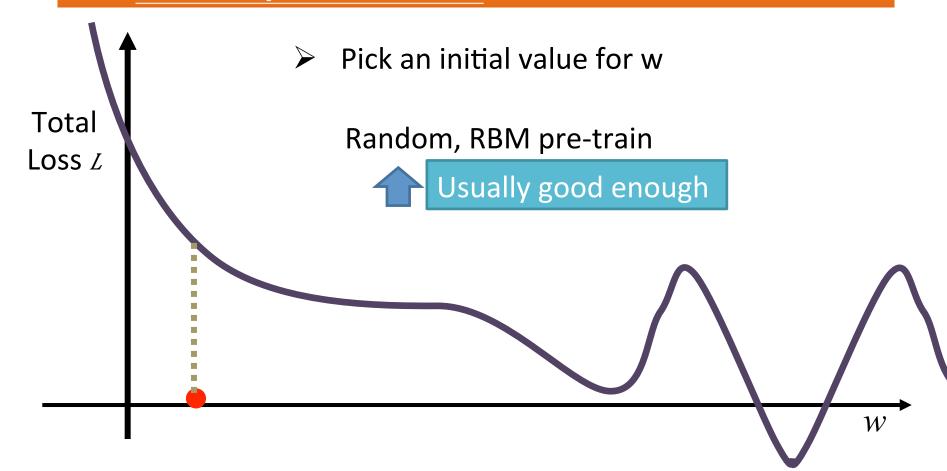
E.g. speech recognition: 8 layers and 1000 neurons each layer



Gradient Descent

Network parameters $\theta = \{w_1, w_2, ..., b_1, b_2, ...\}$

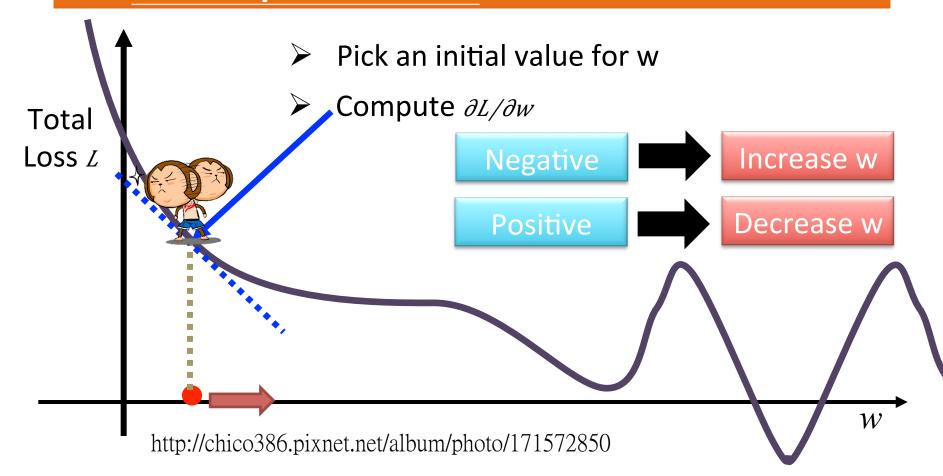
Find *network parameters* θ^* that minimize total loss L



Gradient Descent

Network parameters $\theta = \{w_1, w_2, ..., b_1, b_2, ...\}$

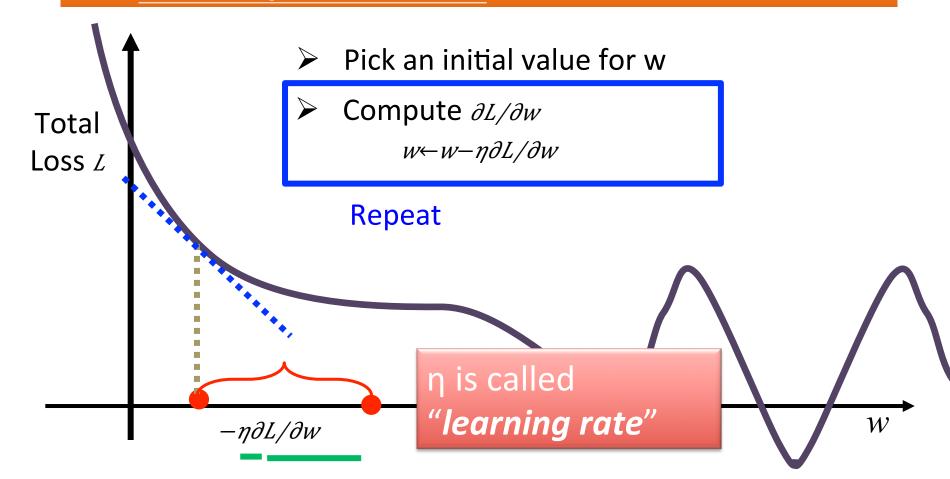
Find *network parameters* θ^* that minimize total loss L



Gradient Descent

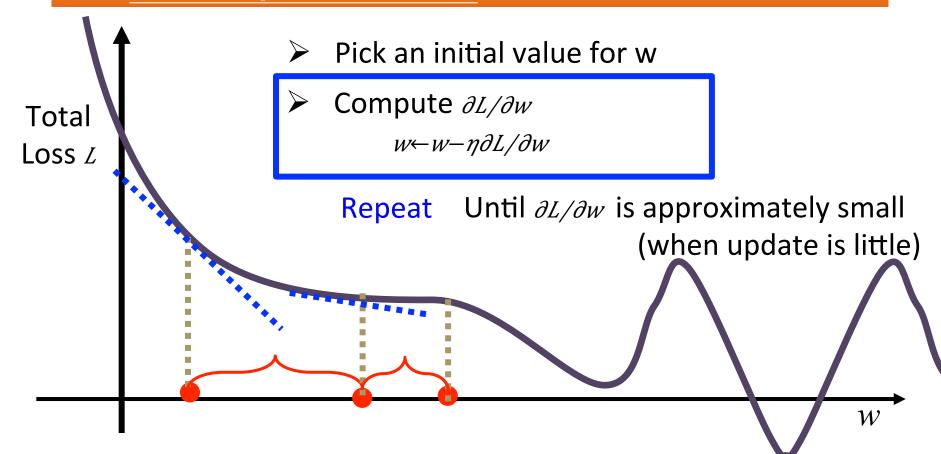
Network parameters $\theta = \{w_1, w_2, ..., b_1, b_2, ...\}$

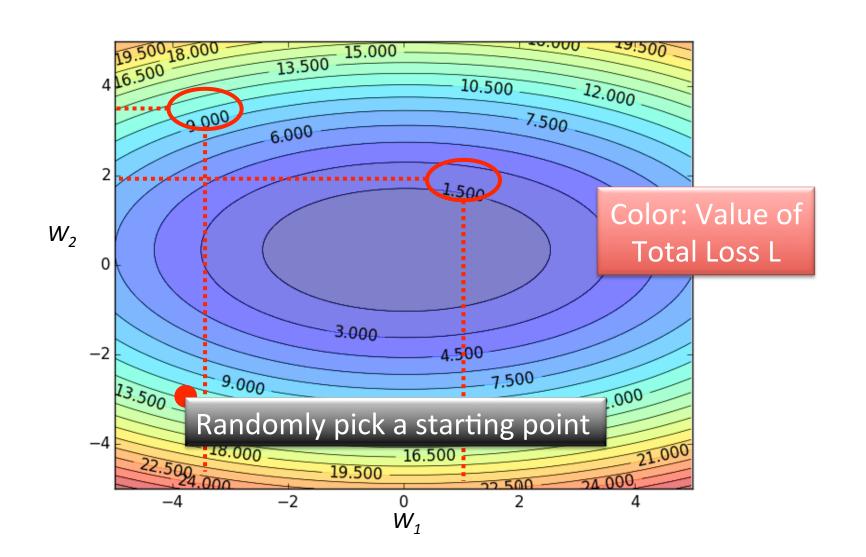
Find *network parameters* θ^* that minimize total loss L



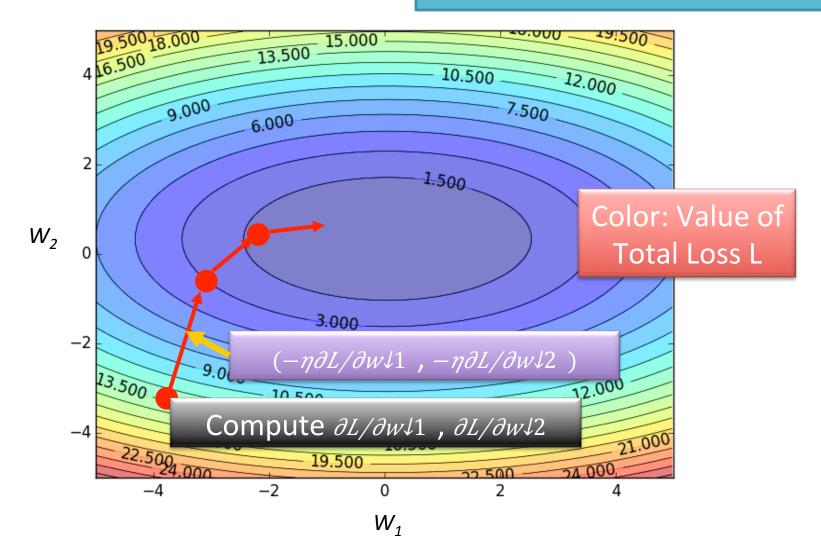
Network parameters $\theta = \{w_1, w_2, ..., b_1, b_2, ...\}$

Find *network parameters* θ^* that minimize total loss L

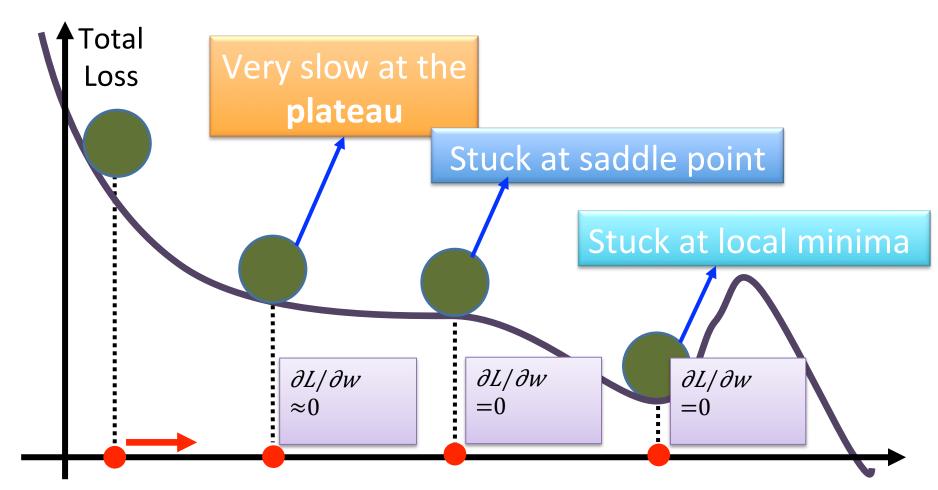




Hopfully, we would reach a minima



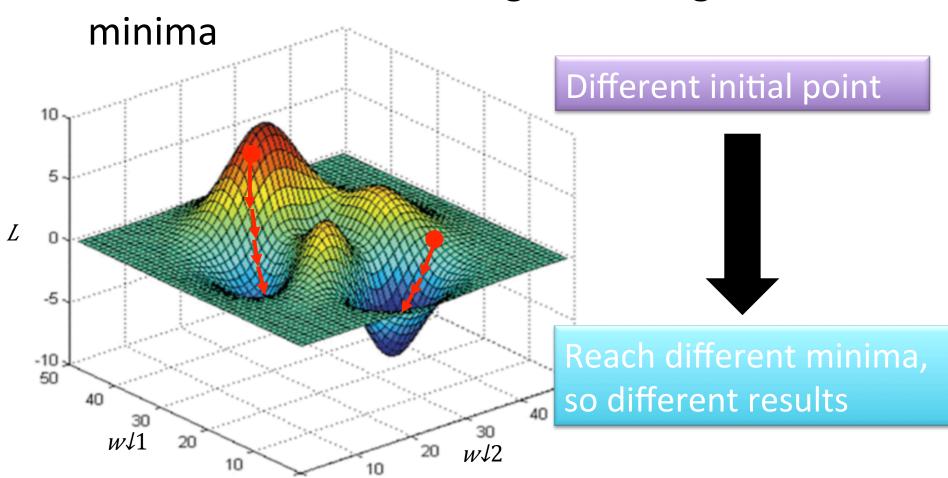
Local Minima



The value of a network parameter w

Local Minima

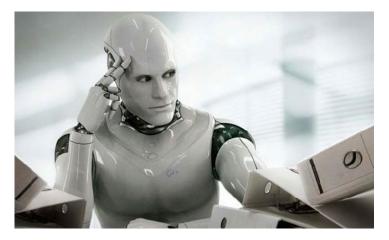
Gradient descent never guarantee global



This is the "learning" of machines in deep learning

Even alpha go using this approach.

People image



Actually

I hope you are not too disappointed :p

Backpropagation

• Backpropagation: an efficient way to compute $\partial L/\partial w$ in neural network

Three Steps for Deep Learning

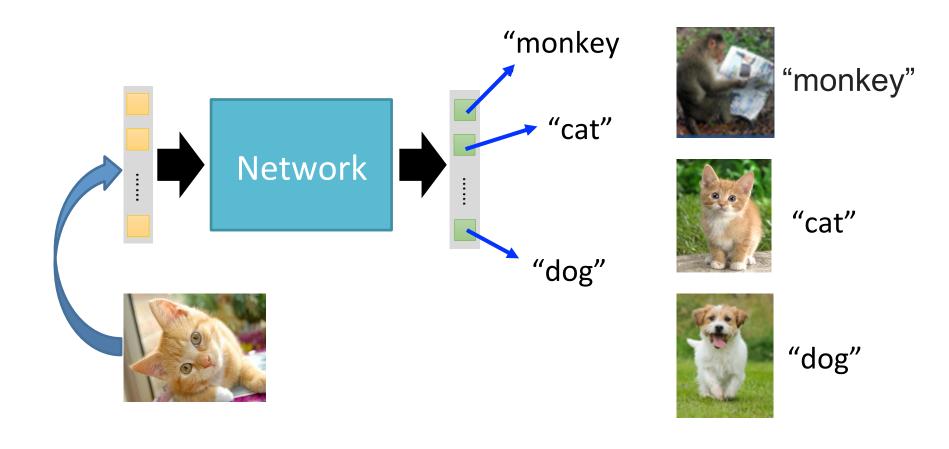
Deep Learning is so simple

Now If you want to find a function

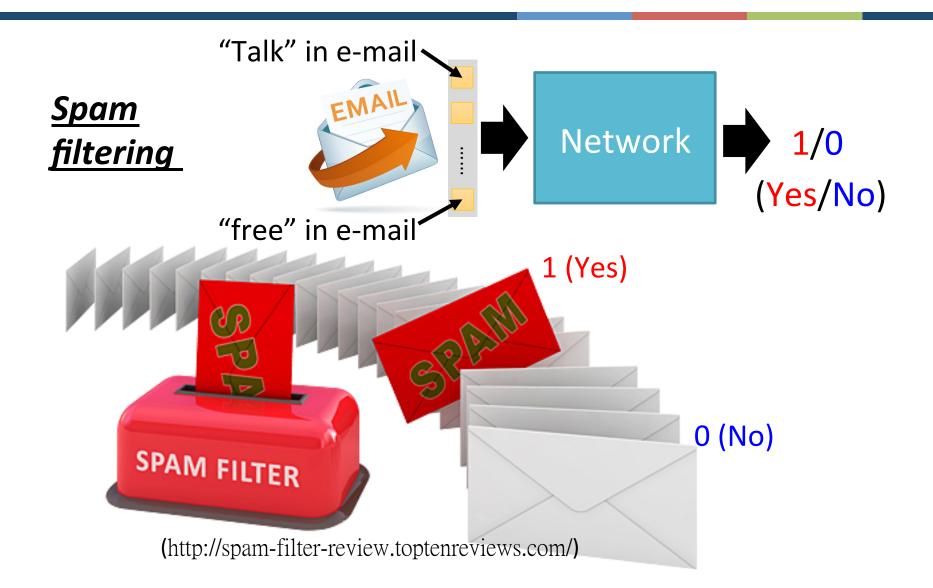
If you have lots of function input/output (?) as training data

For example, you can do

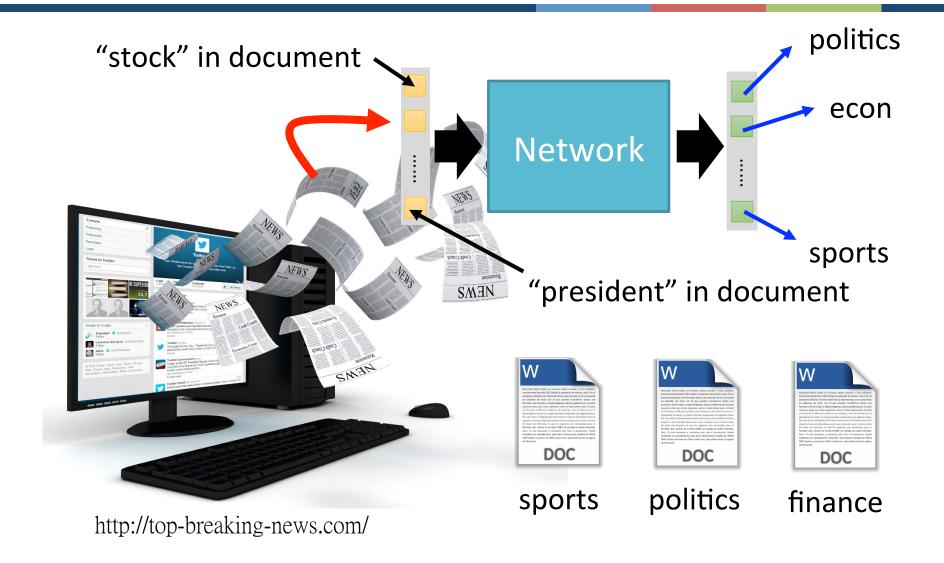
Image Recognition



For example, you can do



For example, you can do

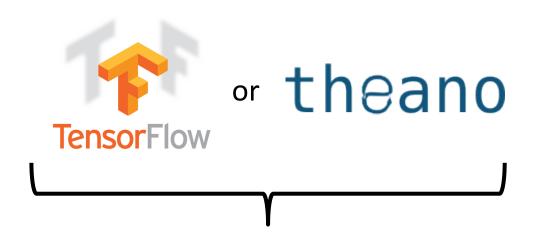


Outline

Introduction of Deep Learning

"Hello World" for Deep Learning

Tips for Deep Learning



Very flexible

Need some effort to learn

Interface of TensorFlow or Theano

Easy to learn and use (still have some flexibility)

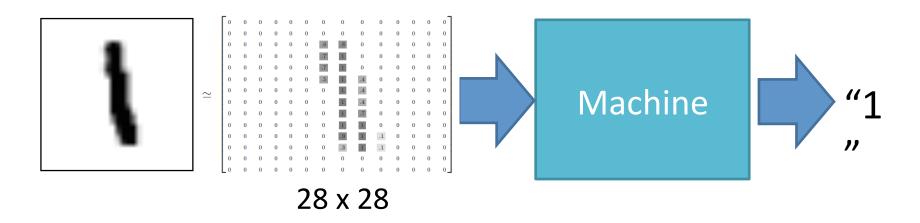
You can modify it if you can write TensorFlow or Theano

- François Chollet is the author of Keras.
- Keras means horn in Greek
- Documentation: http://keras.io/
- Example: https://github.com/fchollet/keras/ tree/master/examples

Tutorial: https://pytorch.org/tutorials

Example Application

Handwriting Digit Recognition



MNIST Data: http://yann.lecun.com/exdb/mnist/ "Hello world" for deep learning

Keras provides data sets loading function: http://keras.io/datasets/

Step 1: define a set of function

Step 2: goodness of function

Step 3: pick the best function

```
28x28
   500
   500
             Softmax
          y_1
```

```
model = Sequential()
```

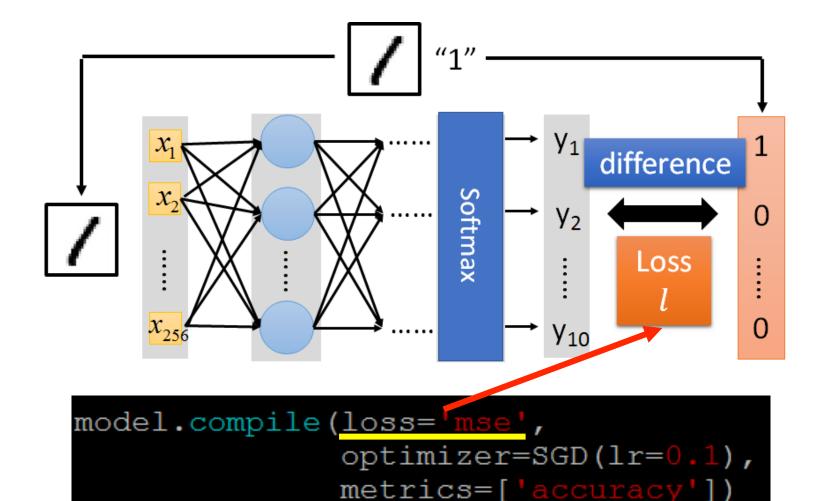
```
model.add( Dense( output_dim=500 ) )
model.add( Activation('sigmoid') )
```

```
model.add( Dense(output_dim=10 ) )
model.add( Activation('softmax') )
```

Step 1: define a set of function

Step 2: goodness of function

Step 3: pick the best function



Step 1: define a set of function

Step 2: goodness of function

Step 3: pick the best function

Step 3.1: Configuration

$$w \leftarrow w - \eta \partial L / \partial w$$

0.1

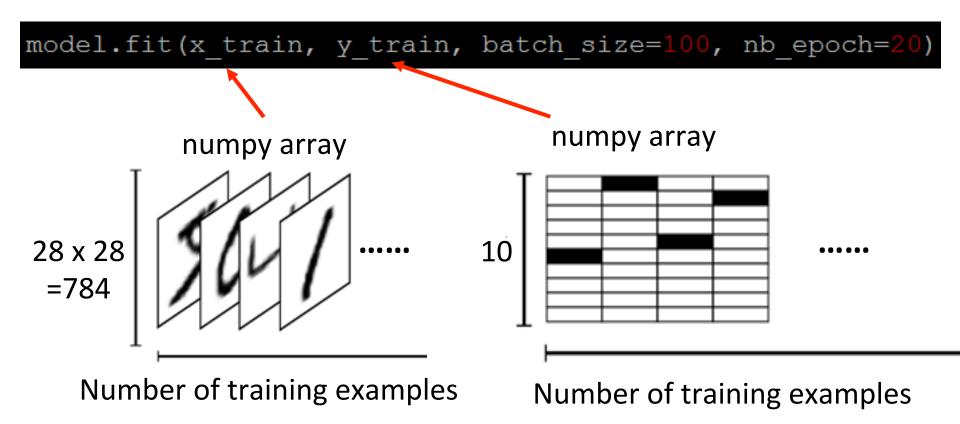
Step 3.2: Find the optimal network parameters

```
Training data (Images)

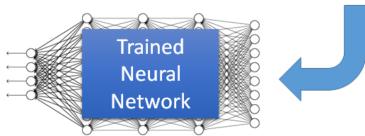
Labels (digits)
```

Keras Step 1: define a set of function Step 2: goodness of function Step 3: pick the best function

Step 3.2: Find the optimal network parameters



https://www.tensorflow.org/versions/r0.8/tutorials/mnist/beginners/index.html



Save and load models

http://keras.io/getting-started/faq/#how-can-i-save-a-keras-model

How to use the neural network (testing):

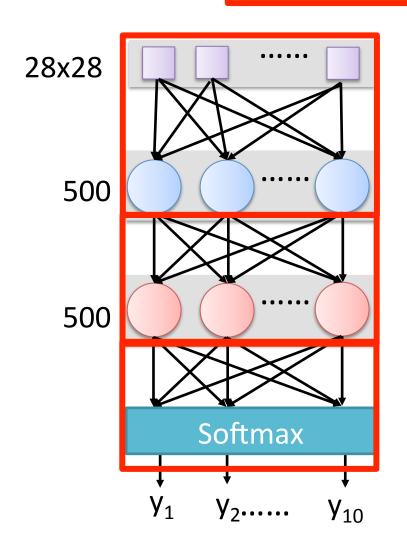
```
case 1: print('Total loss on Testing Set:', score[0])
print('Accuracy of Testing Set:', score[1])
```

```
case 2: result = model.predict(x_test)
```

Step 1: define a set of function

Step 2: goodness of function

Step 3: pick the best function

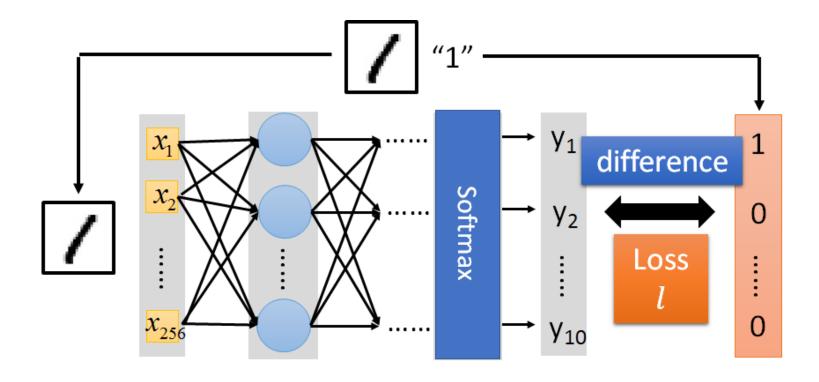


```
import torch.nn as nn
import torch.nn.functional as F
class MyNetwork(nn.Module):
  def init (self):
     super(MyNetwork, self). init ()
    self.fc1 = nn.Linear(28 * 28, 500)
     self.fc2 = nn.Linear(500, 500)
    self.fc3 = nn.Linear(500, 10)
  def forward(self, x):
    x = F.sigmoid(self.fc1(x))
    x = F.sigmoid(self.fc2(x))
    x = self.fc3(x)
    return F.log softmax(x)
```

Step 1: define a set of function

Step 2: goodness of function

Step 3: pick the best function



```
net = MyNetwork()
optimizer = torch.optim.SGD(net.parameters(), lr=0.1, momentum=0.9)
criterion = nn.MSELoss()
```

Step 1: define a set of function

Step 2: goodness of function

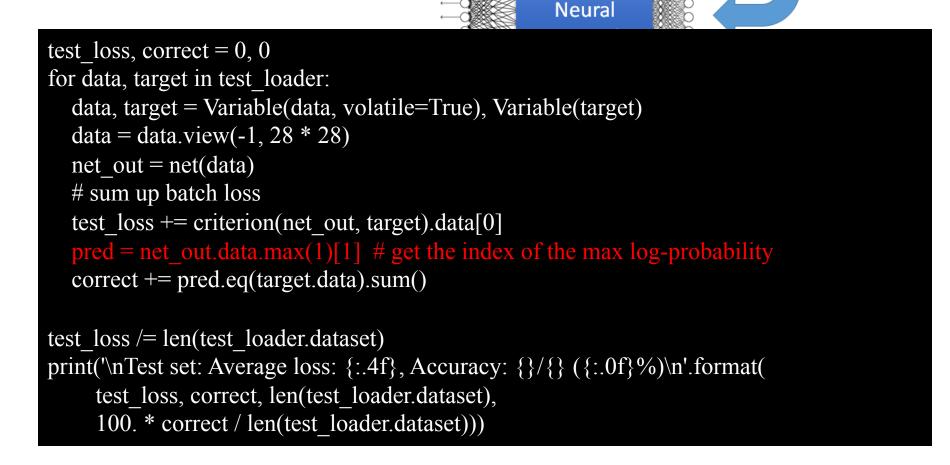
Step 3: pick the best function

Step 3.1: Training

```
for epoch in range(epochs):
  for batch idx, (data, target) in enumerate(train loader):
     data, target = Variable(data), Variable(target)
     # resize data from (batch size, 1, 28, 28) to (batch size, 28*28)
     data = data.view(-1, 28*28)
    optimizer.zero grad()
    net out = net(data)
     loss = criterion(net out, target)
     loss.backward()
    optimizer.step()
     if batch idx \% \log \text{ interval} == 0:
       print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
             epoch, batch idx * len(data), len(train loader.dataset),
                 100. * batch idx / len(train loader), loss.data[0]))
```

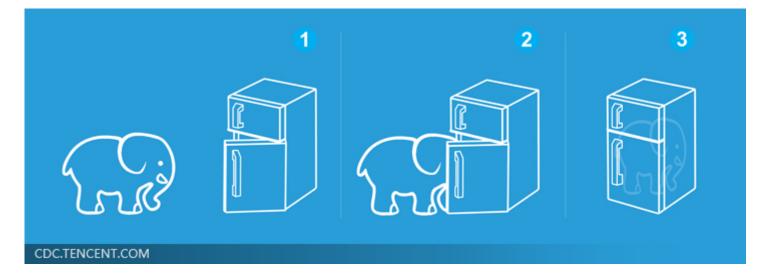

Trained

Step 3.2: Performance report



Three Steps for Deep Learning

Deep Learning is so simple



Outline

Introduction of Deep Learning

"Hello World" for Deep Learning

Tips for Deep Learning

Recipe of Deep Learning

Step 1: define a set of function

Step 2: goodness of function

Step 3: pick the best function

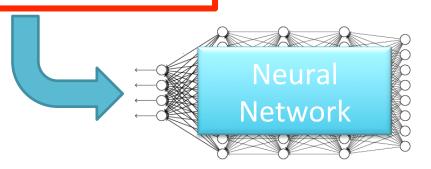
Overfitting!

NO

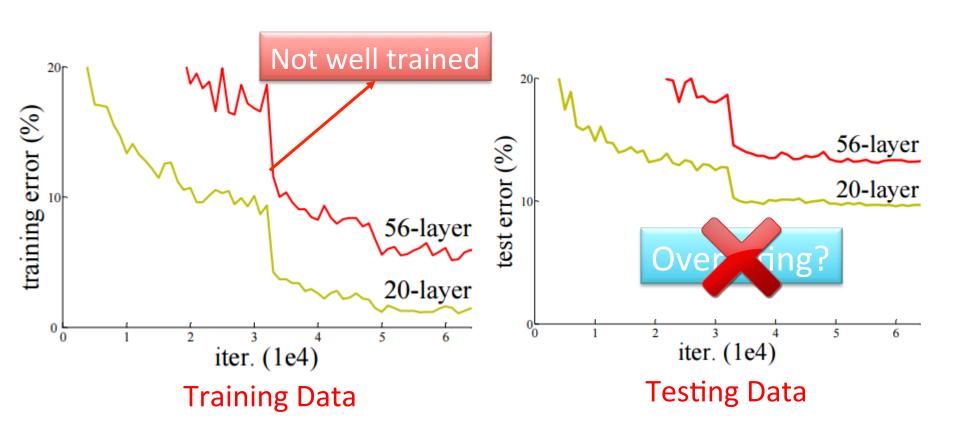
Good Results on Testing Data?

NO

Good Results on Training Data?



Do not always blame Overfitting



Deep Residual Learning for Image Recognition http://arxiv.org/abs/1512.03385

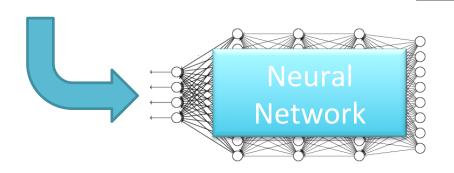
Recipe of Deep Learning

Different approaches for different problems.

e.g. dropout for good results on testing data

Good Results on Testing Data?

Good Results on Training Data?



Recipe of Deep Learning

YES

Choosing proper loss

Mini-batch

New activation function

Adaptive Learning Rate

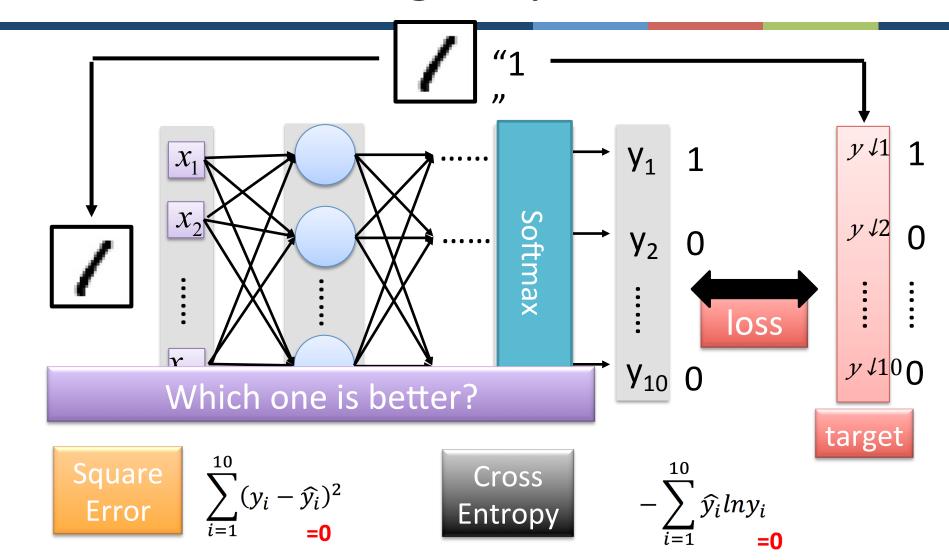
Momentum

Good Results on Testing Data?

YES

Good Results on Training Data?

Choosing Proper Loss



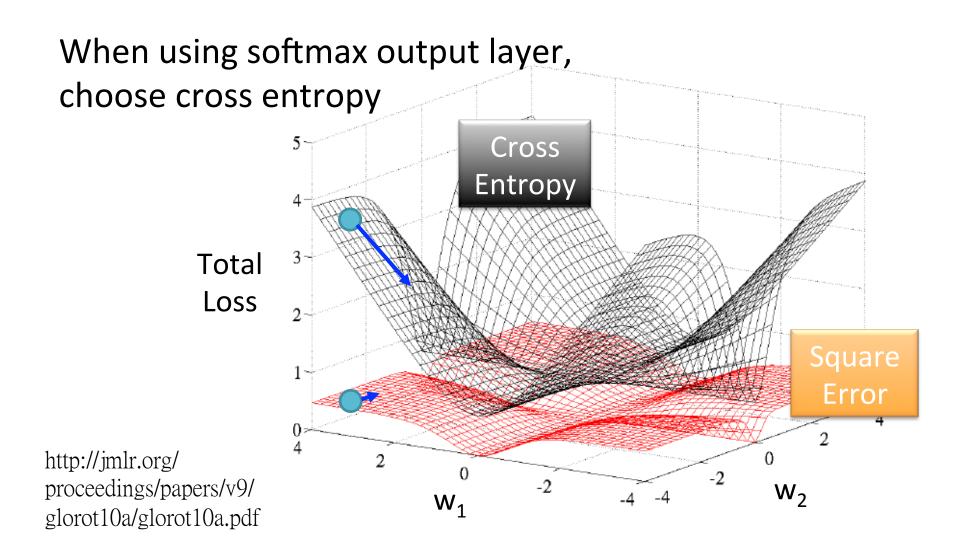
Demo

Square Error

Cross Entropy

Several alternatives: https://keras.io/objectives/

Choosing Proper Loss



Recipe of Deep Learning

YES

Choosing proper loss

Mini-batch

New activation function

Adaptive Learning Rate

Momentum

Good Results on Testing Data?

YES

Good Results on Training Data?

model.fit(x_train, y_train, batch_size=100, nb_epoch=20)

We do not really minimize total loss!

Mini-batch,

Randomly initialize

network parameters

Mini-batch

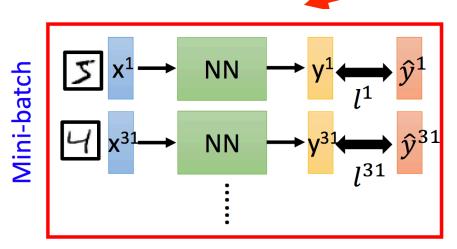
- Pick the 1st batch $L' = l^1 + l^{31} + \cdots$ Update parameters once
- Pick the 2^{nd} batch $L'' = l^2 + l^{16} + \cdots$ Update parameters once \vdots
- Until all mini-batches have been picked

one epoch

Repeat the above process

Mini-batch

model.fit(x train, y train, batch size=100, nb epoch=20



100 examples in a mini-batch

Pick the 1st batch $L' = l^1 + l^{31} + \cdots$ Update parameters once

- Pick the 2nd batch $L'' = l^2 + l^{16} + \cdots$ Update parameters once
- Until all mini-batches have been picked

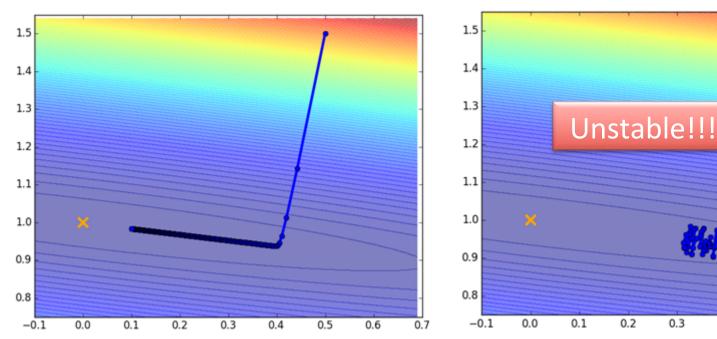
Repeat 20 times

Mini-batch

Original Gradient Descent

With Mini-batch

0.6



The colors represent the total loss.

Mini-batch is Faster

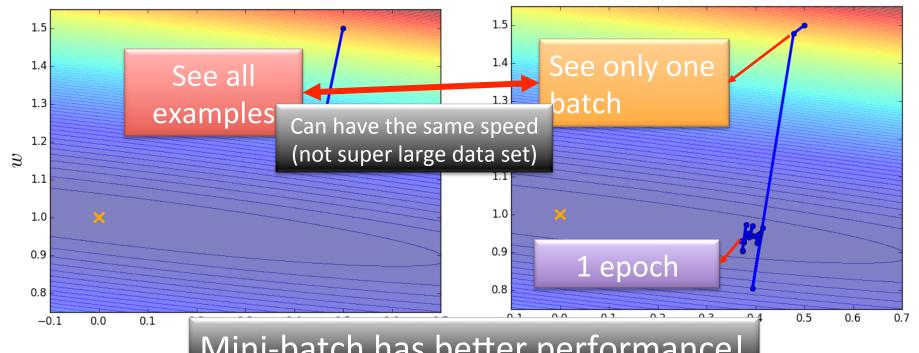
parallel computing.

Original Gradient Descent

Update after seeing all examples

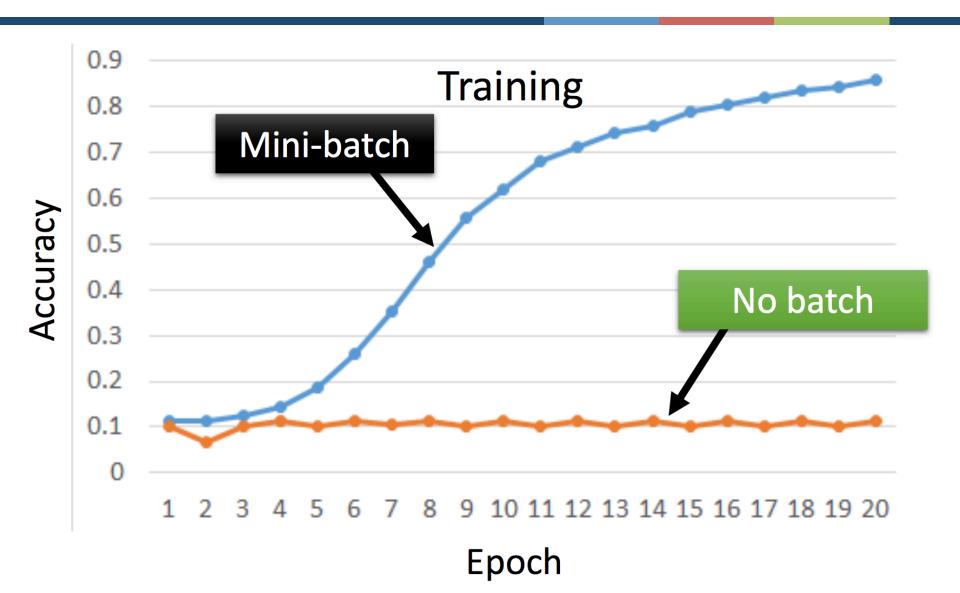
With Mini-batch

If there are 20 batches, update 20 times in one epoch.

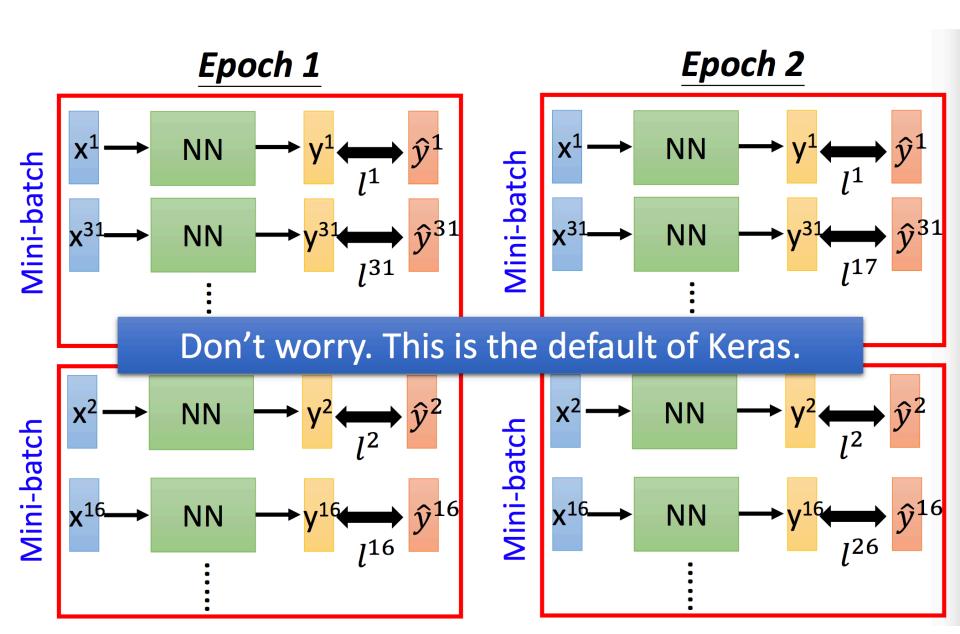


Mini-batch has better performance!

Mini-batch is Faster



Shuffle the training examples for each epoch



Recipe of Deep Learning

YES

Choosing proper loss

Mini-batch

New activation function

Adaptive Learning Rate

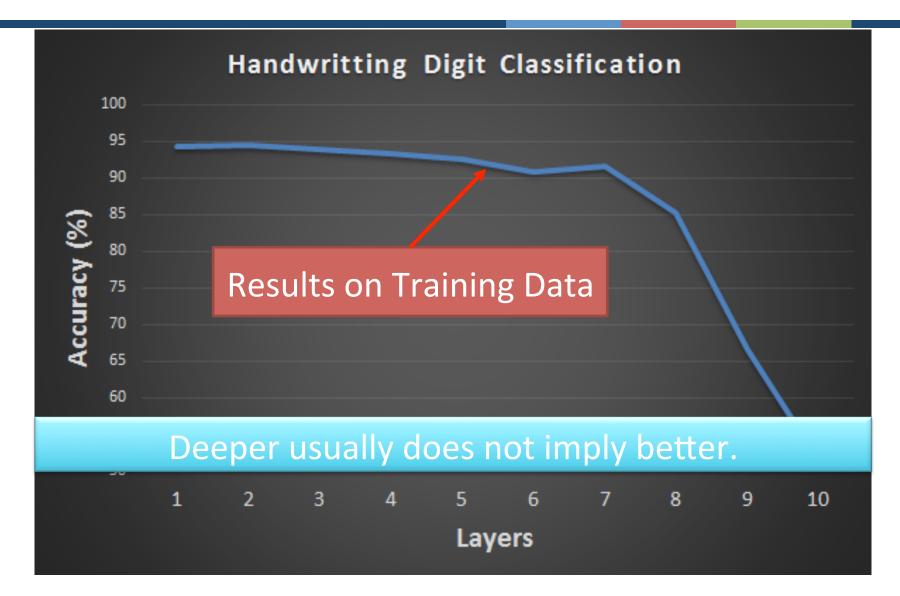
Momentum

Good Results on Testing Data?

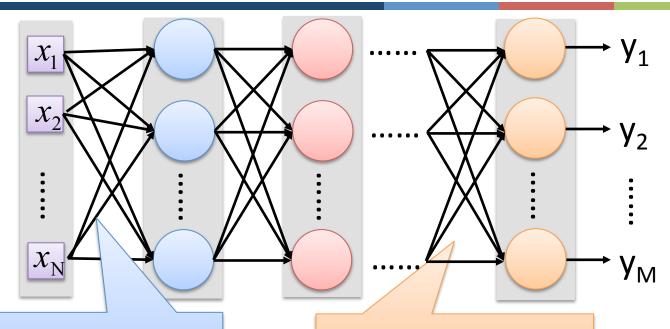
YES

Good Results on Training Data?

Hard to get the power of Deep ...



Vanishing Gradient Problem



Smaller gradients

Learn very slow

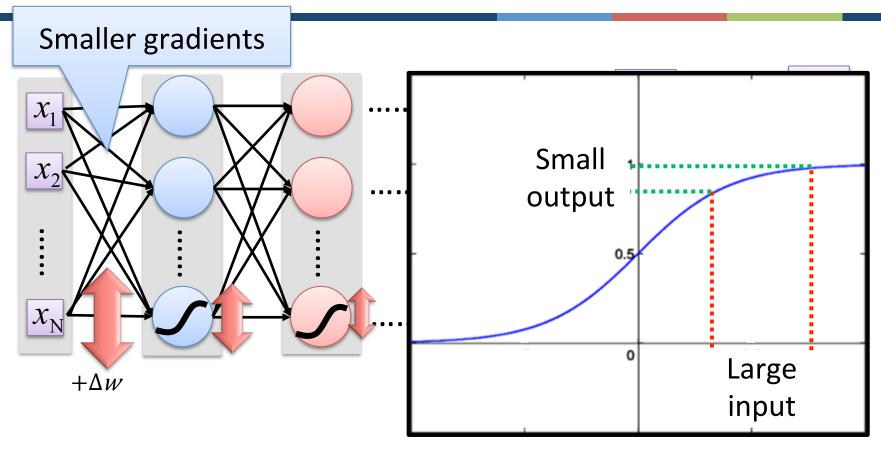
Almost random

Larger gradients

Learn very fast

Already converge

Vanishing Gradient Problem

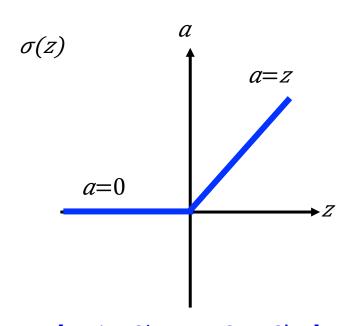


Intuitive way to compute the derivatives ...

 $\partial l/\partial w = ? \Delta l/\Delta w$

ReLU

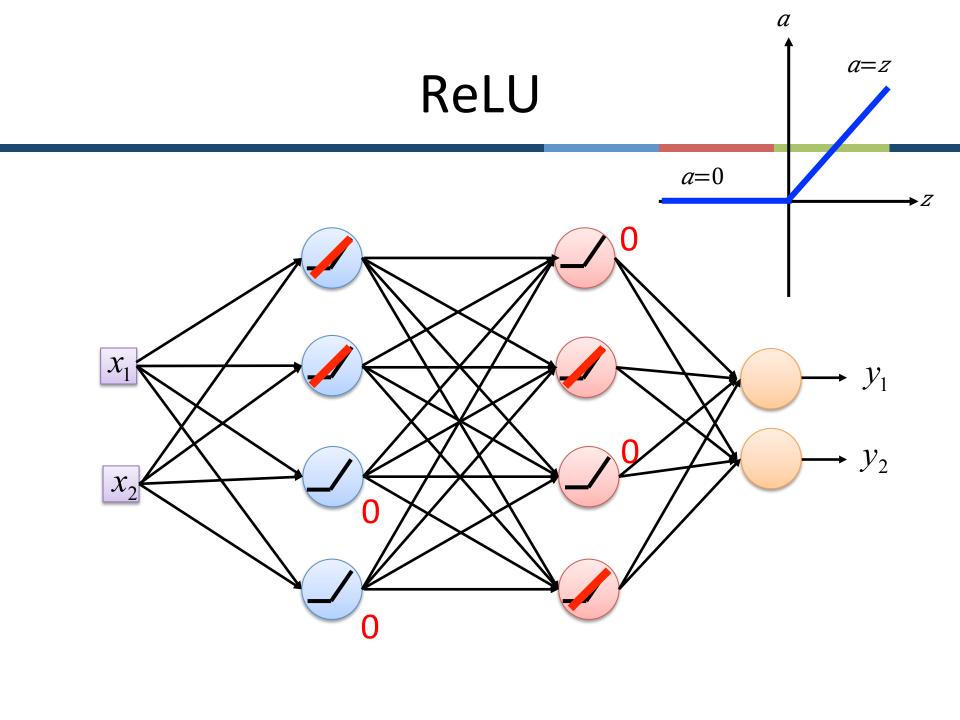
Rectified Linear Unit (ReLU)

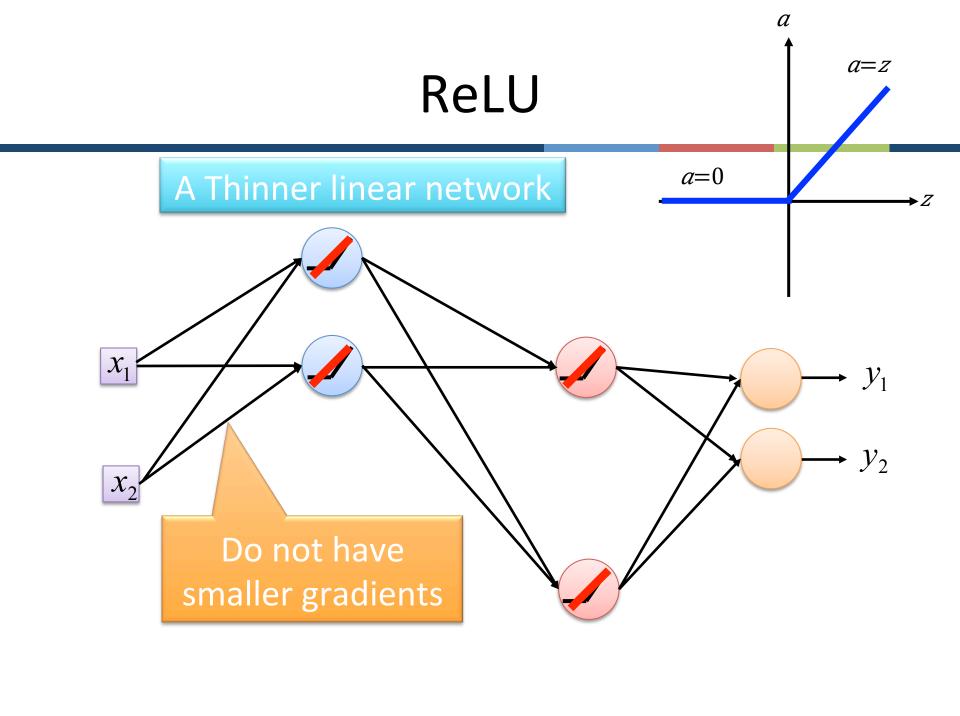


[Xavier Glorot, AISTATS'11] [Andrew L. Maas, ICML'13] [Kaiming He, arXiv'15]

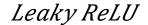
Reason:

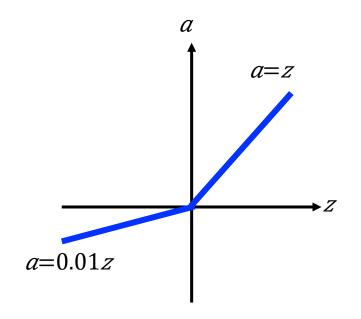
- 1. Fast to compute
- 2. Sparsity
- 3. Vanishing gradient problem



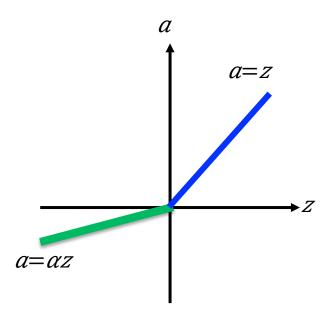


ReLU - variant





Parametric ReLU

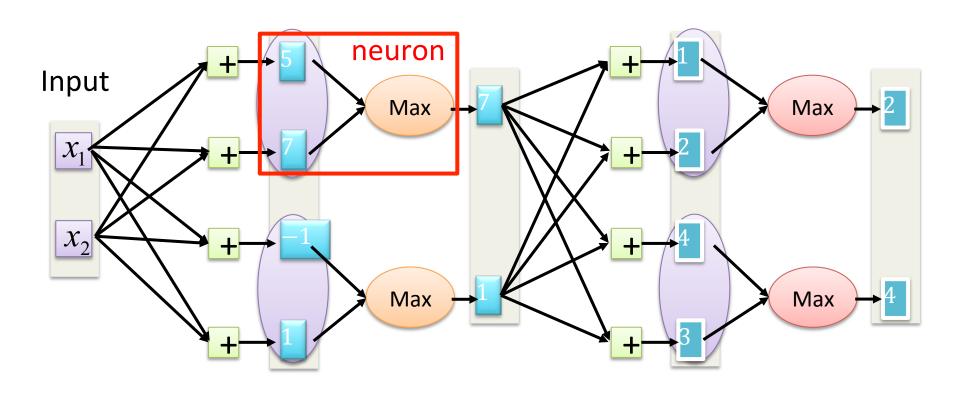


α also learned by gradient descent

Maxout

ReLU is a special cases of Maxout

Learnable activation function [lan J. Goodfellow, ICML'13]



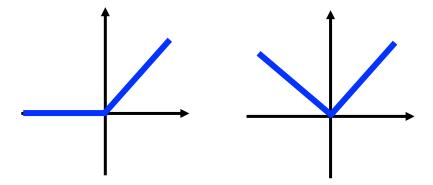
You can have more than 2 elements in a group.

Maxout

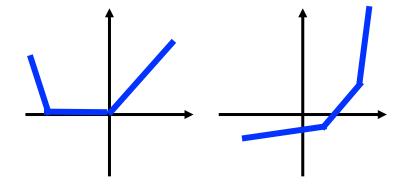
ReLU is a special cases of Maxout

- Learnable activation function [lan J. Goodfellow, ICML'13]
 - Activation function in maxout network can be any piecewise linear convex function
 - How many pieces depending on how many elements in a group

2 elements in a group



3 elements in a group



Recipe of Deep Learning

YES

Choosing proper loss

Mini-batch

New activation function

Adaptive Learning Rate

Momentum

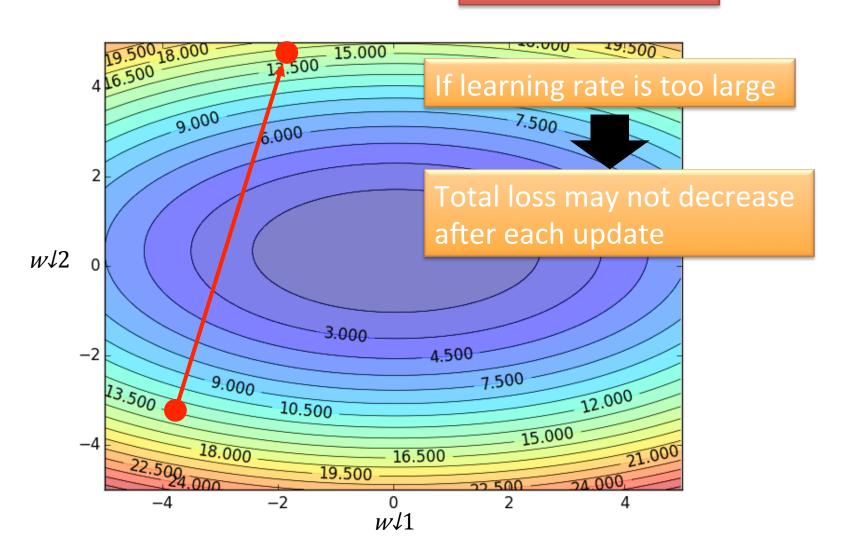
Good Results on Testing Data?

YES

Good Results on Training Data?

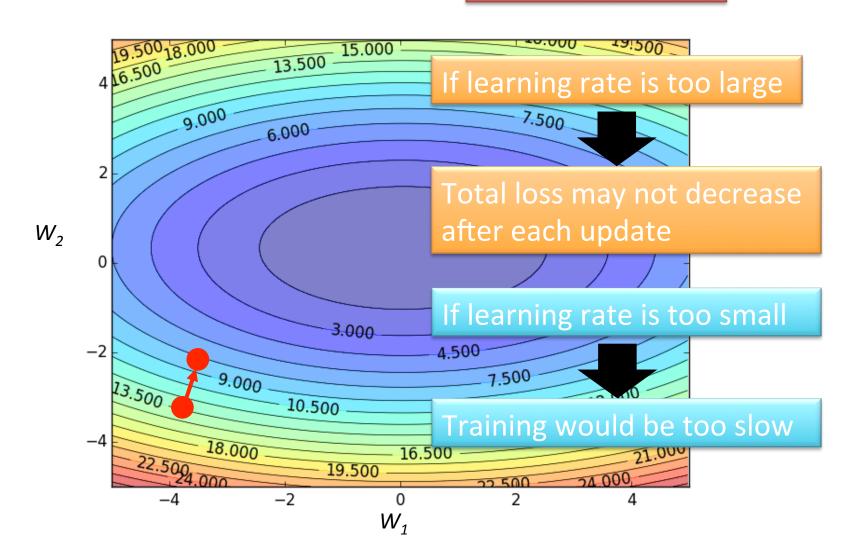
Learning Rates

Set the learning rate η carefully



Learning Rates

Set the learning rate η carefully



Learning Rates

- Popular & Simple Idea: Reduce the learning rate by some factor every few epochs.
 - At the beginning, we are far from the destination, so we use larger learning rate
 - After several epochs, we are close to the destination, so we reduce the learning rate
 - E.g. 1/t decay: $\eta^t = \eta/\sqrt{t+1}$
- Learning rate cannot be one-size-fits-all
 - Giving different parameters different learning rates

Adagrad

Original:
$$w \leftarrow w - \eta \partial L / \partial w$$

Adagrad: $w \leftarrow w - \eta_w \partial L / \partial w$

Parameter dependent learning rate

$$\eta_w = \frac{\eta}{\sqrt{\sum_{i=0}^t (g^i)^2}}$$
constant
$$g^i \text{ is } \partial L / \partial w \text{ obtained at the i-th update}$$

Summation of the square of the previous derivatives

$$\eta_w = \frac{\eta}{\sqrt{\sum_{i=0}^t (g^i)^2}}$$

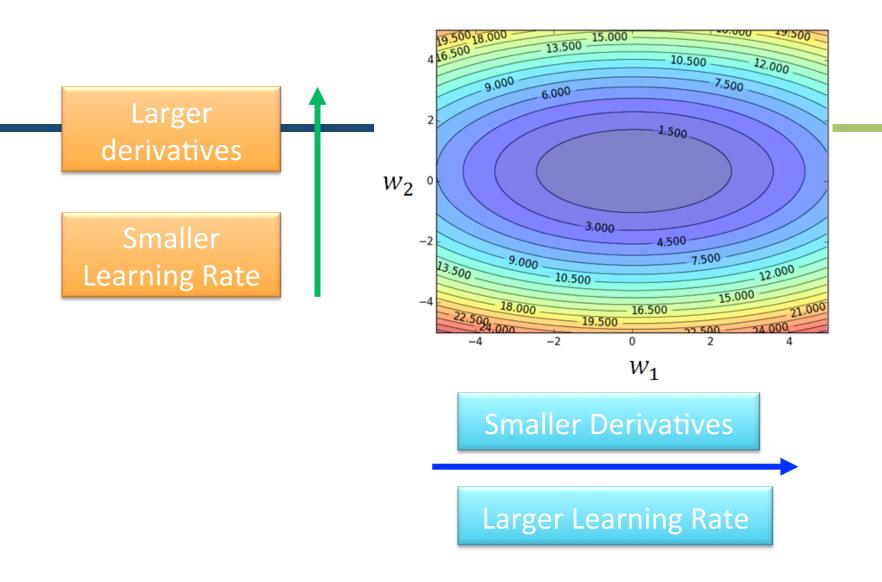
Adagrad

Learning rate:

Learning rate:
$$\frac{\eta}{\sqrt{0.1^2}} = \frac{\eta}{0.1} \qquad \frac{\eta}{\sqrt{20^2}} = \frac{\eta}{20}$$

$$\frac{\eta}{\sqrt{0.1^2 + 0.2^2}} = \frac{\eta}{0.22} \qquad \frac{\eta}{\sqrt{20^2 + 10^2}} = \frac{\eta}{22}$$

- **Observation:** 1. Learning rate is smaller and smaller for all parameters
 - 2. Smaller derivatives, larger learning rate, and vice versa



2. Smaller derivatives, larger learning rate, and vice versa

Not the whole story

- Adagrad [John Duchi, JMLR'11]
- RMSprop
 - https://www.youtube.com/watch?v=O3sxAc4hxZU
- Adadelta [Matthew D. Zeiler, arXiv'12]
- "No more pesky learning rates" [Tom Schaul, arXiv'12]
- AdaSecant [Caglar Gulcehre, arXiv'14]
- Adam [Diederik P. Kingma, ICLR'15]
- Nadam
 - http://cs229.stanford.edu/proj2015/054_report.pdf

Recipe of Deep Learning

YES

Choosing proper loss

Mini-batch

New activation function

Adaptive Learning Rate

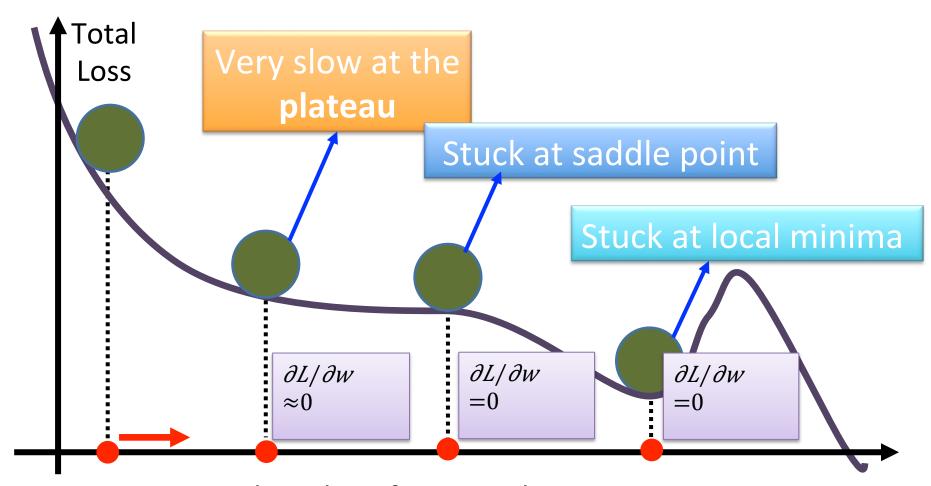
Momentum

Good Results on Testing Data?

YES

Good Results on Training Data?

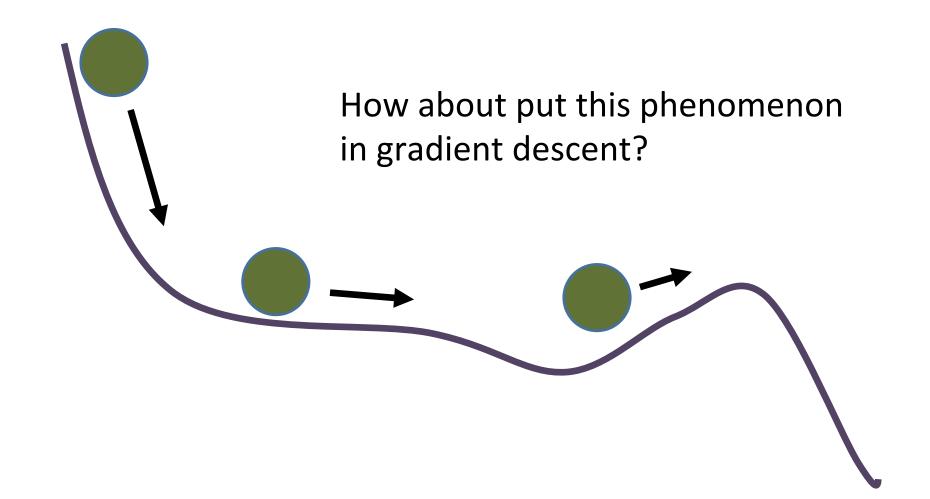
Hard to find optimal network parameters



The value of a network parameter w

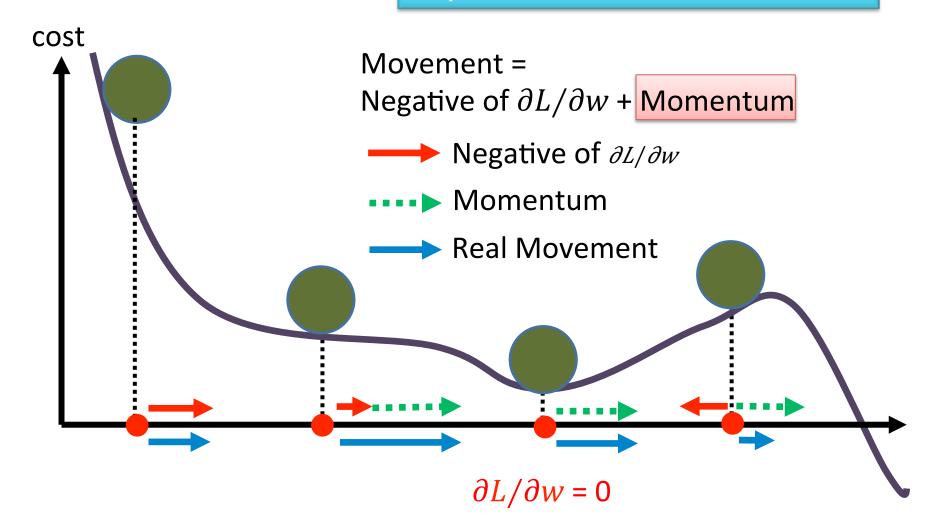
In physical world

Momentum



Momentum

Still not guarantee reaching global minima, but give some hope



RMSProp (Advanced Adagrad) + Momentum

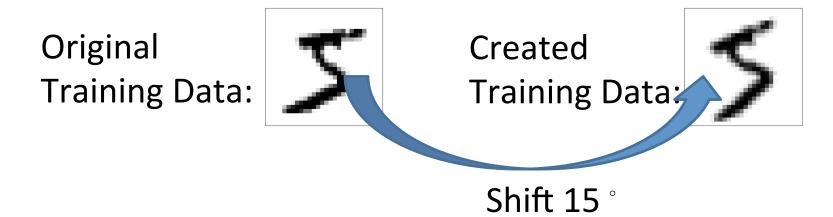
```
model.compile(loss='categorical crossentropy',
                                              optimizer=SGD(lr=0.1),
                                             metrics=['accuracy'])
model.compile(loss='categorical crossentropy',
                                              optimizer=Adam(),
                                             metrics=['accuracy'])
                                               Algorithm 1: Adam, our proposed algorithm for stochastic optimization. See section 2 for details,
                                                and for a slightly more efficient (but less clear) order of computation. q_t^2 indicates the elementwise
                                                square g_t \odot g_t. Good default settings for the tested machine learning problems are \alpha = 0.001,
                                                \beta_1 = 0.9, \beta_2 = 0.999 and \epsilon = 10^{-8}. All operations on vectors are element-wise. With \beta_1^t and \beta_2^t
                                                we denote \beta_1 and \beta_2 to the power t.
                                                Require: \alpha: Stepsize
                                                Require: \beta_1, \beta_2 \in [0, 1): Exponential decay rates for the moment estimates
                                                Require: f(\theta): Stochastic objective function with parameters \theta
                                                Require: \theta_0: Initial parameter vector
                                                  m_0 \leftarrow 0 (Initialize 1<sup>st</sup> moment vector)
                                                  v_0 \leftarrow 0 (Initialize 2<sup>nd</sup> moment vector)
                                                  t \leftarrow 0 (Initialize timestep)
 loss = nn.CrossEntropyLoss()
                                                                                                      at timestep t)
 optimizer = torch.optim.Adam(model.parameters(), lr=0.1)
                                                                                                      ent estimate)
                                                    \widehat{m}_t \leftarrow m_t/(1-\beta_1^t) (Compute bias-corrected first moment estimate)
                                                    \hat{v}_t \leftarrow v_t/(1-\beta_2^t) (Compute bias-corrected second raw moment estimate)
                                                    \theta_t \leftarrow \theta_{t-1} - \alpha \cdot \widehat{m}_t / (\sqrt{\widehat{v}_t} + \epsilon) (Update parameters)
                                                  return \theta_t (Resulting parameters)
```

Recipe of Deep Learning YES **Early Stopping** Good Results on **Testing Data?** Regularization YES Dropout Good Results on **Training Data? Network Structure**

Panacea for Overfitting

- Have more training data
- *Create* more training data (?)

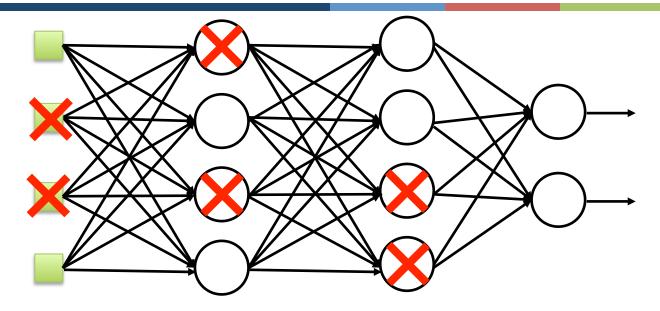
Handwriting recognition:



Recipe of Deep Learning YES **Early Stopping** Good Results on Testing Data? Regularization YES Dropout Good Results on **Training Data? Network Structure**

Dropout

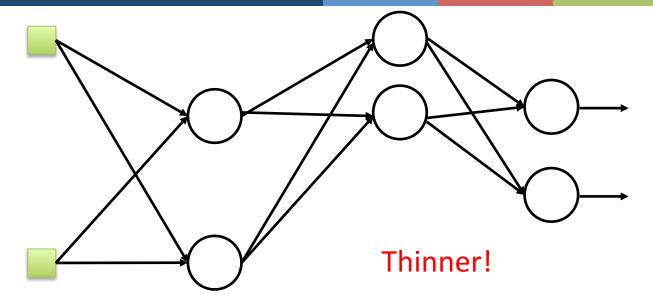
Training:



- > Each time before updating the parameters
 - Each neuron has a probability of p to dropout

Dropout

Training:

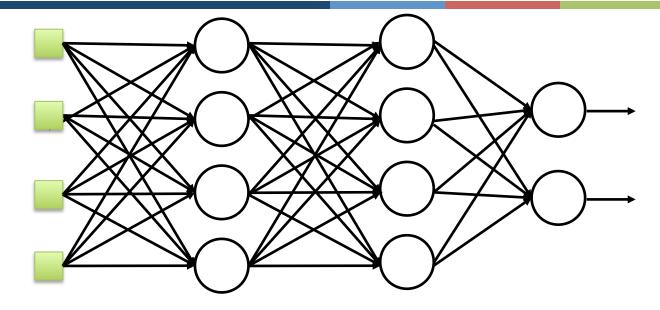


- > Each time before updating the parameters
 - Each neuron has a probability of p to dropout
 - The structure of the network is changed.
 - Using the new network for training

For each mini-batch, we resample the dropout neurons

Dropout

Testing:



No dropout

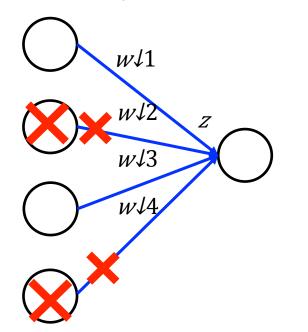
- If the dropout rate at training is p, all the weights times 1-p
- Assume that the dropout rate is 50%. If a weight w=1 by training, set w=0.5 for testing.

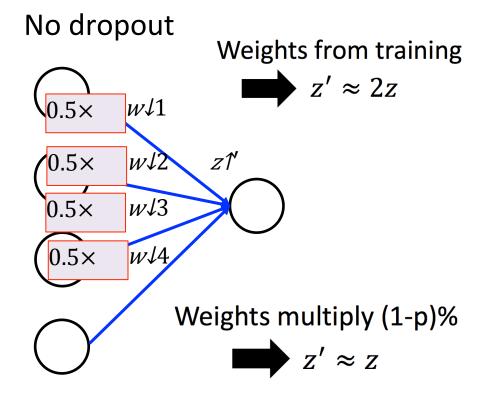
Dropout - Intuitive Reason

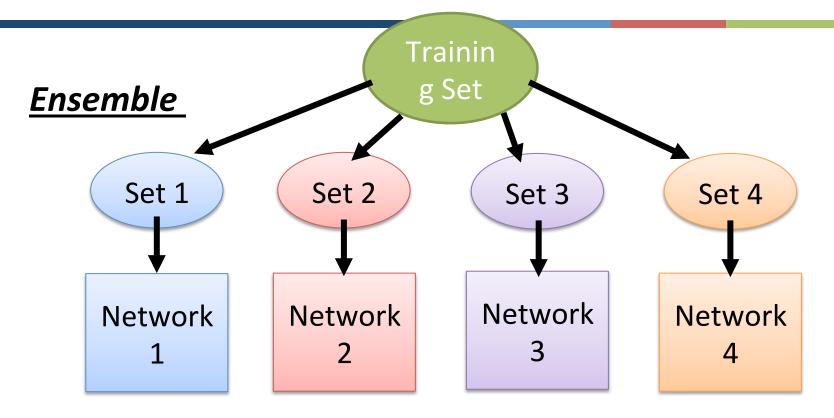
 Why the weights should multiply (1-p) when testing?

Training of Dropout

Assume dropout rate is 0.5

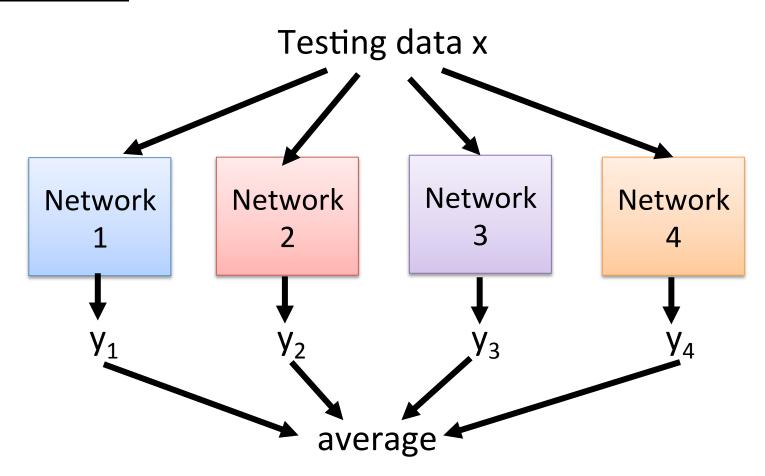


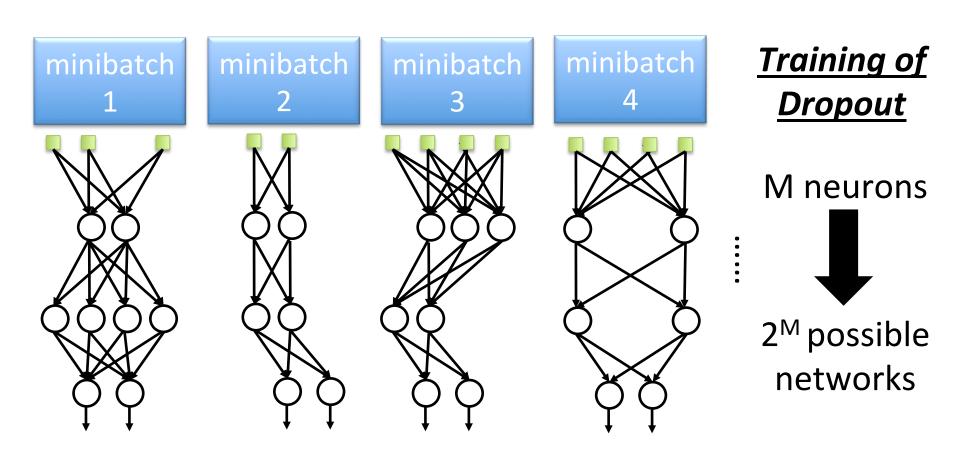




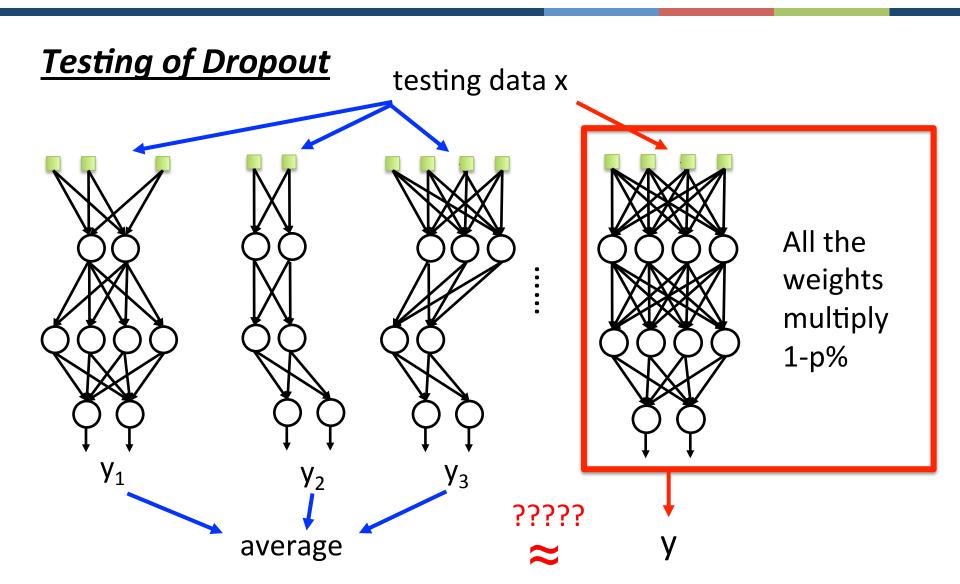
Train a bunch of networks with different structures

Ensemble





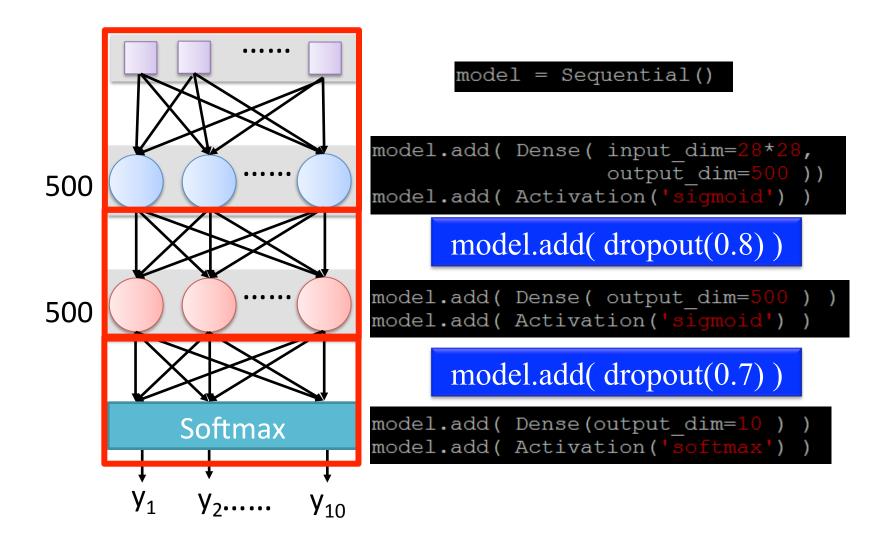
- >Using one mini-batch to train one network
- >Some parameters in the network are shared



More about dropout

- More reference for dropout [Nitish Srivastava, JMLR'14] [Pierre Baldi, NIPS'13][Geoffrey E. Hinton, arXiv'12]
- Dropout works better with Maxout [lan J. Goodfellow, ICML'13]
- Dropconnect [Li Wan, ICML'13]
 - Dropout delete neurons
 - Dropconnect deletes the connection between neurons
- Annealed dropout [S.J. Rennie, SLT'14]
 - Dropout rate decreases by epochs
- Standout [J. Ba, NISP'13]
 - Each neural has different dropout rate

Demo



PyTorch

28x28

500

500

Step 1: define a set of function

Softmax

 y_1

Step 2: goodness of function

Step 3: pick the best function

```
import torch.nn as nn
import torch.nn.functional as F
class MyNetwork(nn.Module):
  def init (self):
    super(MyNetwork, self). init ()
    self.fc1 = nn.Linear(28 * 28, 500)
    self.fc2 = nn.Linear(500, 500)
    self.fc3 = nn.Linear(500, 10)
  def forward(self, x):
    x = F.sigmoid(self.fc1(x))
    x = F.sigmoid(self.fc2(x))
    return F.log softmax(self.fc3(x))
```

Recipe of Deep Learning YES **Early Stopping** Good Results on **Testing Data?** Regularization YES Dropout Good Results on **Training Data?** Network Structure CNN is a very good example! (next lecture)

Concluding Remarks

Recipe of Deep Learning

Step 1: define a set of function

Step 2: goodness of function

Step 3: pick the best function

NO

Good Results on Testing Data?

NO

Good Results on Training Data?

