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Unspervised Learning

“We expect unsupervised learning to become
far more important in the longer term. Human
and animal learning is largely unsupervised: we
discover the structure of the world by observing
it, not by being told the name of every object.”
— LeCun, Bengio, Hinton, Nature 2015

Yann LeCun, March 14, 2016

# “Pure” Reinforcement Learning (cherry)
» The machine predicts a scalar
reward given once in a while.

> A few bits for some samples

# Supervised Learning (icing)
» The machine predicts a category
or a few numbers for each input

» Predicting human-supplied data
» 10-10,000 bits per sample

# Unsupervised/Predictive Learning (cake)

» The machine predicts any part of
its input for any observed part.

» Predicts future frames in videos
» Millions of bits per sample

# (Yes, I know, this picture is slightly offensive to RL folks. But I'll make it up)



Auto-encoder
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Recap: PCA
Minimize (x — % )?
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Deep Auto-encoder
necessary

* Of course, the auto-encoder can be deep

As close as possible

Initialize by RBM

Code
layer-by-layer

Hinton, Geofirey E., and Ruslan R. Salakhutdinov. "Reducing the
dimensionality of data with neural networks." Science 313.5786 (2006): 504-507
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Deep Auto-encoder

* De-noising auto-encoder

l As close as possible

encode decode
m) =) c =)
N AddT F
noise

Vincent, Pascal, et al. "Extracting and composing robust features with denoising
autoencoders." ICML, 2008.



Auto-encoder - Text Retrieval

Vector Space Model Bag-of-word
this
N word string: ®

query “This is an apple” @
- an

apple
pen

document

—

Semantics are not
considered.



Auto-encoder - Text Retrieval

The documents talking about ———
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Auto-encoder —
Similar Image Search
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Retrieved using Euclidean distance in pixel intensity space

dist: 0.0 dist: 3064.2 dist: 3094.1 dist: 3132.4

dist: 3139.2 dist: 3147.0 dist: 3150.9 dist: 3154.8

retrieved using 256 codes




Auto-encoder - CNN

As close as
possible

Unpooling Convolution

Deconvolution



CNN -Unpooling

Alternative: simply
repeat the values

Pooled Maps

Pooling

Ql

Feature Maps ‘

Source of image :
https://leonardoaraujosantos.gitbooks.io/artificial-
inteligence/content/image_segmentation.html

Max Locatlons
“Switches”




CNN

- Deconvo
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Actually, deconvolution is convolution.
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deconv(W)

In Tensorflow

conv(WT)

conv_transpose(W)



Auto-encoder — Pre-training

* Greedy layer-wise pre-training
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Target

Input 784 Input



Auto-encoder — Pre-training

* Greedy layer-wise pre-training
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Auto-encoder — Pre-training

* Greedy layer-wise pre-training
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Auto-encoder — Pre-training

* Greedy layer-wise pre-training
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More about Auto-encoder

As close as possible
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Embedding, Latent Representation, Latent Code
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* More than minimizing reconstruction error

* More mterpretable embedding



1. Beyond Reconstruction

[ Train ¢ to minimize L
e How to evaluate an encoder? p = MM ED

Small L, » The embeddings

— Loss of the classification task 1s L ,
4 are representative.

| Large L}, M) Not representative .

Discrimi

image
& nator

y/n

¢

" binary classifier

NN
Encoder‘




1. Beyond Reconstruction

e How to evaluate an encoder?

— Loss of the classification task 1s L

image

nator

Discrimi l_’ v/
¢

binary classifier

NN

Encoder
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[ Train ¢ to minimize L
» =minL
D gD

Small L, » The embedding.s
< are representative.

| Large L}, ™ Not representative .

Train @ to minimize L},
0" =arg mein Ly
= arg min min L
g mi p oD

Train the encoder 6 and
discriminator ¢ to minimize L
Deep InfoMax (DIM)

(c.f. training encoder and decoder

| to minimize reconstruction error)



1. Beyond Reconstruction

As close as possible
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2. Sequential Data

previous
Skip thought e e e e

current 30—30—30—0
et <eos> | got back home
O »O »O »O »O »0O »0O »0O :
..... This was strange <eos>
| could see the cat on the steps

<eos> This was strange

https://papers.nips.cc/paper/5950-skip-thought-vectors.pdf ’
next



2. Sequential Data

Quick thought

current Spring had come.

random They were so black.

next And yet his crops didn’t grow.

random He had blue eyes.
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|
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https://arxiv.org/pdf/1803.02893.pdf



3. Feature Disentangle

* An object contains multiple aspect information
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Include phonetic information,

—l

|

._,_>

Decoder

ko

V

speaker information, etc.

. — Encoder

iInput sentence

Include syntactic information,

reconstructed

Decoder

0-000

g

semantic information, etc.

.

reconstructed



3. Feature Disentangle

y. phonetic information
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3. Feature Disentangle

e Voice conversion
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3. Feature Disentangle

e Voice conversion
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4. Discrete Representation

* FKasier to interpret or clustering

One-hot
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Concluding Remarks

As close as possible
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Embedding, Latent Representation, Latent Code
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* More than minimizing reconstruction error
— Using discriminator
— Sequential data
* More interpretable embedding
— Feature disentangle
— Discrete representation



