

BIG DATA and AI for business

Auto-encoder

Decisions, Operations & Information Technologies Robert H. Smith School of Business Fall, 2020

Unspervised Learning

- "We expect unsupervised learning to become far more important in the longer term. Human and animal learning is largely unsupervised: we discover the structure of the world by observing it, not by being told the name of every object." – LeCun, Bengio, Hinton, Nature 2015
- Yann LeCun, March 14, 2016
- I "Pure" Reinforcement Learning (cherry)
 - The machine predicts a scalar reward given once in a while.
 - A few bits for some samples

Supervised Learning (icing)

- The machine predicts a category or a few numbers for each input
- Predicting human-supplied data
- ► 10→10,000 bits per sample

Unsupervised/Predictive Learning (cake)

- The machine predicts any part of its input for any observed part.
- Predicts future frames in videos
- Millions of bits per sample

(Yes, I know, this picture is slightly offensive to RL folks. But I'll make it up)

Deep Auto-encoder

Symmetry is not necessary

• Of course, the auto-encoder can be deep

Hinton, Geoffrey E., and Ruslan R. Salakhutdinov. "Reducing the dimensionality of data with neural networks." Science 313.5786 (2006): 504-507

Deep Auto-encoder

PCA

Deep Auto-encoder

Deep Auto-encoder

• De-noising auto-encoder

Vincent, Pascal, et al. "Extracting and composing robust features with denoising autoencoders." ICML, 2008.

Auto-encoder - Text Retrieval

Vector Space Model

Bag-of-word

this 1 is 1 word string: "This is an apple" a an 1 apple 1 pen 0 i

Semantics are not considered.

Auto-encoder - Text Retrieval

The documents talking about the same thing will have close code.

Auto-encoder – Similar Image Search

Retrieved using Euclidean distance in pixel intensity space

dist: 3139.2

dist: 3064.2

dist: 3147.0

dist: 3094.1

dist: 3132.4

dist: 3154.8

retrieved using 256 codes

Auto-encoder - CNN As close as possible Deconvolution Convolution Unpooling Deconvolution Pooling Unpooling Convolution code Deconvolution Pooling

Alternative: simply repeat the values

Source of image :

https://leonardoaraujosantos.gitbooks.io/artificialinteligence/content/image_segmentation.html

• Greedy layer-wise pre-training

• Greedy layer-wise pre-training

• Greedy layer-wise pre-training

• Greedy layer-wise pre-training

Find-tune by backpropagation

More about Auto-encoder

As close as possible

- More than minimizing reconstruction error
- More interpretable embedding

1. Beyond Reconstruction

1. Beyond Reconstruction

1. Beyond Reconstruction

As close as possible

2. Sequential Data

2. Sequential Data

Quick thought

https://arxiv.org/pdf/1803.02893.pdf

3. Feature Disentangle

• An object contains multiple aspect information

3. Feature Disentangle

• Voice conversion

3. Feature Disentangle

• Voice conversion

4. Discrete Representation

• Easier to interpret or clustering

Concluding Remarks

As close as possible

- Embedding, Latent Representation, Latent Code
- More than minimizing reconstruction error
 - Using discriminator
 - Sequential data
- More interpretable embedding
 - Feature disentangle
 - Discrete representation