
Deep Learning (2)
Word Embedding

Decisions, Operations & Information Technologies
Robert H. Smith School of Business
Fall, 2020

K. Zhang BUDT 758

•  Represent an item (e.g., word) as a vector of
numbers

Vector space models

•  Represent an item (e.g., word) as a vector of
numbers

•  The vector can correspond to documents in

which the word occurs

Vector space models

•  Represent an item (e.g., word) as a vector of
numbers

•  The vector can correspond to neighboring

word context.

Vector space models

“yellow banana grows on trees in africa”

-1 0 +1 +2 +3 +4 +5

•  Represent an item (e.g., word) as a vector of
numbers

•  The vector can correspond to character

trigrams in the word.

Vector space models

•  Comparing two vectors (e.g., using cosine
similarity) estimates how similar the two words
are. However, the notion of relatedness depends
on what vector representation you have chosen for
the words.

Seattle similar to denver?
Because they are both cities
 OR
 seattle similar to seahawks
 because “seattle seahawks”

Notions of relatedness

•  We have four (tiny) documents,

Document 1 : “seattle seahawks jerseys”
Document 2 : “seattle seahawks highlights”
Document 3 : “denver broncos jerseys”
Document 4 : “denver broncos highlights”

Let’s consider the following example…

If we use document occurrence vectors

If we use word context vectors

If we use character trigram vectors

•  man is to woman as king is to ?
•  good is to best as smart is to ?
•  china is to beijing as russia is to ?

•  Turns out the word-context based vector
model we just learnt is good for such analogy
tasks,
 [king] – [man] + [woman] ≈ [queen]�

Word analogy task

Potential approaches…

•  Approach 1: Use existing thesauri or ontologies
like WordNet and Snomed CT (for medical).
Drawbacks:
– Manual
– Not context specific

•  Approach 2: Use co-occurrences for word
similarity. Drawbacks:
– Quadratic space needed
– Relative position and order of words not considered

12

Approach 3: low dimensional vectors

•  Store only “important” information in fixed, low
dimensional vector.

•  Single Value Decomposition (SVD) on co-occurrence
matrix
–  is the best rank k approximation to X , in terms of least

squares
–  Motel = [0.286, 0.792, -0.177, -0.107, 0.109, -0.542, 0.349,

0.271]

13

�

Approach 3: low dimensional vectors

•  An Improved Model of Semantic Similarity
Based on Lexical Co-Occurrence, Rohde et al.
2005 �
�
�

14

�

Problems with SVD

•  Computational cost scales quadratically for n x
m matrix: O(mn2)

•  Hard to incorporate new words or documents
•  Does not consider order of words

15

�

•  The vectors we have been
discussing so far are very
high- dimensional
(thousands, or even
millions) and sparse.

•  But there are techniques to
learn lower-dimensional
dense vectors for words
using the same intuitions.

•  These dense vectors are
called embeddings.

Embedding

Learning dense embeddings

word2vec approach to represent the meaning
of word

•  Represent each word with a low-dimensional
vector

•  Word similarity = vector similarity
•  Key idea: Predict surrounding words of every

word
•  Faster and can easily incorporate a new

sentence/document or add a word to the
vocabulary �

18

Represent the meaning of word – word2vec

•  2 basic neural network models:
– Continuous Bag of Word (CBOW): use a

window of word to predict the middle word
– Skip-gram (SG): use a word to predict the

surrounding ones in window. �

19

The model

•  We’re going to train a simple neural network
with a single hidden layer to perform a
certain task
– We are not actually going to use that neural

network for the task we trained it on!

•  Instead, the goal is actually just to
learn the weights of the hidden layer
– These weights are actually the “word vectors”

20

Model details

21

A fake task - intuition

•  Given a specific word in the middle of a
sentence (the input word), look at the words
nearby and pick one at random.
– The network is going to tell us the probability for

every word in our vocabulary of being the “nearby
word” that we chose.
•  E.g., if you gave the trained network the input word

“Soviet”, the output probabilities are going to be much
higher for words like “Union” and “Russia” than for
unrelated words like “watermelon” and “kangaroo”.

•  "nearby" means "window size"
– A typical window size might be 5, meaning 5 words

behind and 5 words ahead (10 in total).
22

The fake task

•  Training samples

23

The hidden layer

24

The hidden layer

25

•  The hidden layer of this model is really just
operating as a lookup table. The output of the
hidden layer is just the “word vector” for the
input word.

Efficiency issue

•  Recall that the neural network had two weight
matrices–a hidden layer and output layer. Both of
these layers would have a weight matrix with 300 x
10,000 = 3 million weights each!

•  Three innovations:
1.  Treating common word pairs or phrases as single

“words” in their model.
2.  Subsampling frequent words to decrease the number of

training examples.
3.  Modifying the optimization objective with a technique

they called “Negative Sampling”, which causes each
training sample to update only a small percentage of
the model’s weights.

26

1. Word pairs and phrases

•  The authors pointed out that a word pair
like “Boston Globe” (a newspaper) has a
much different meaning than the individual
words “Boston” and “Globe”. So it makes
sense to treat “Boston Globe”, wherever it
occurs in the text, as a single word with its
own word vector representation.

27

2. Subsampling frequent words

•  There are two “problems” with common words like
“the”:
–  When looking at word pairs, (“fox”, “the”) doesn’t tell us

much about the meaning of “fox”. “the” appears in the
context of pretty much every word.

–  We will have many more samples of (“the”, …) than we
need to learn a good vector for “the”. 28

2. Subsampling frequent words

•  For each word we encounter in our training
text, there is a chance that we will effectively
delete it from the text.

•  The probability that we cut the word is
related to the word’s frequency. 29

2. Subsampling frequent words

•  If we have a window size of 10, and we
remove a specific instance of “the” from our
text:
– As we train on the remaining words, “the” will

not appear in any of their context windows.
– We’ll have 10 fewer training samples where

“the” is the input word.

30

Sampling rate

•  wi is the word, z(wi) is the fraction of the
total words in the corpus that are that word.

•  P(wi) is the probability of keeping the word:

31

Sampling rate

32

3. Negative sampling

•  As we discussed above, the size of our word
vocabulary means that our skip-gram neural
network has a tremendous number of
weights, all of which would be updated
slightly by every one of our billions of
training samples!

•  Negative sampling addresses this by having
each training sample only modify a small
percentage of the weights, rather than all of
them. Here’s how it works.

33

3. Negative sampling

•  Given a word pair (“fox”, “quick”), for the
output neuron corresponding to “quick” to
output a 1, and for all of the other thousands
of output neurons to output a 0.
– We randomly select just a small number of

“negative” words to update the weights for
– We will also still update the weights for our

“positive” word (which is the word “quick” in
our current example).

34

3. Negative sampling

•  We will just be updating the weights for our
positive word (“quick”), plus the weights for 5
other words that we want to output 0.
– That’s a total of 6 output neurons, and 1,800

weight values total.
– That’s only 0.06% of the 3M weights in the

output layer!

35

Selecting negative samples

36

Some interesting results

37

Word analogies

38

Resources

•  Stanford CS224d: Deep Learning for NLP
– http://cs224d.stanford.edu/index.html
– The best

•  “word2vec Parameter Learning Explained”,
Xin Rong
– https://ronxin.github.io/wevi/

•  Word2Vec Tutorial - The Skip-Gram Model
– http://mccormickml.com/2016/04/19/

word2vec-tutorial-the-skip-gram-model/

39

