

BIG DATA and AI for business

Deep Learning (3)

Decisions, Operations & Information Technologies Robert H. Smith School of Business Fall, 2020

Variants of Neural Networks

Convolutional Neural Network (CNN)

Widely used in image processing

Recurrent Neural Network (RNN)

Why CNN for Image?

Can the network be simplified by considering the properties of images?

Why CNN for Image

Some patterns are much smaller than the whole image

A neuron does not have to see the whole image to discover the pattern.

Connecting to small region with less parameters

Why CNN for Image

The same patterns appear in different regions.

Why CNN for Image

 Subsampling the pixels will not change the object bird

We can subsample the pixels to make image smaller

Three Steps for Deep Learning

Deep Learning is so simple

The whole CNN

Property 1

Some patterns are much smaller than the whole image

Property 2

The same patterns appear in different regions.

Property 3

Subsampling the pixels will not change the object

Can repeat many times

Flatten

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

6 x 6 image

Those are the network parameters to be learned.

1	-1	-1
-1	1	-1
-1	-1	1

Filter 1

Matrix

Filter 2

Matrix

Property 1 Each filter detects a small pattern (3 x 3).

1	-1	-1
-1	1	-1
-1	-1	1

Filter 1

stride=1

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

3 (-1)

6 x 6 image

1	-1	-1
-1	1	-1
-1	-1	1

Filter 1

If stride=2

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

3 -3

We set stride=1 below

6 x 6 image

stride=1

6 x 6 image

Property 2

-1	1	-1
-1	1	-1
-1	1	-1

Filter 2

stride=1

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

6 x 6 image

Do the same process for every filter

CNN – Zero Padding

1	-1	-1
-1	1	-1
-1	-1	1

Filter 1

0	0	0					
0	1	0	0	0	0	1	
0	0	1	0	0	1	0	
	0	0	1	1	0	0	
	1	0	0	0	1	0	
	0	1	0	0	1	0	0
	0	0	1	0	1	0	0
					0	0	0
	6 x 6 image						

You will get another 6 x 6 images in this way

Zero padding

CNN – Colorful image

Convolution v.s. Fully Connected

Fullyconnected

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

CNN – Max Pooling

Filter 1

-1	1	-1
-1	1	-1
-1	1	-1

Filter 2

 $\begin{bmatrix} -1 & -1 & -1 & -1 \\ -1 & -1 & -2 & 1 \\ \hline -1 & -1 & -2 & 1 \\ \hline -1 & 0 & -4 & 3 \\ \hline \end{bmatrix}$

CNN – Max Pooling

The whole CNN

Smaller than the original image

The number of the channel is the number of filters

Can repeat many times

The whole CNN

cat dog

Convolutional Neural Network

Learning: Nothing special, just gradient descent

CNN in Keras

Only modified the *network structure* and *input format (vector -> 3-D tensor)*

CNN in Keras

Only modified the *network structure* and *input format (vector -> 3-D tensor)*

CNN in Keras

Only modified the *network structure* and *input format (vector -> 3-D tensor)*


```
class Net(nn.Module):
def init (self):
  super(). init ()
  self.conv1 = nn.Conv2d(1, 25, 3)
  self.pool = nn.MaxPool2d(2, 2)
  self.conv2 = nn.Conv2d(25, 50, 3)
  self.pool = nn.MaxPool2d(2, 2)
  self.fc1 = nn.Linear(50*5*5, 100)
  self.fc2 = nn.Linear(100, 10)
 def forward(self,x):
  x = self.pool(F.relu(self.conv1(x)))
  x = self.pool(F.relu(self.conv2(x)))
  x = x.view(-1, self.num flat features(x))
  x = F.relu(self.fc1(x))
  x = F.log softmax(self.fc2(x))
  return x
 def num flat features(self,x):
  size = x.size()[1:]
  num features = 1
  for s in size:
   num features *= s
  return num features
```

CNN in PyTorch

input

What does CNN learn?

The output of the k-th filter is a 11 x 11 matrix.

X

What does CNN learn?

The output of the k-th filter is a 11 x 11 matrix.

X

More Application: Playing Go

Network

•

Next move (19 x 19 positions)

19 x 19 vector

Black: 1

white: -1

none: 0

Fully-connected feedforward network can be used

But CNN performs much better.

More Application: Playing Go

Why CNN for playing Go?

Some patterns are much smaller than the whole image

Alpha Go uses 5 x 5 for first layer

The same patterns appear in different regions.

Why CNN for playing Go?

Subsampling the pixels will not change the object

Max Pooling How to explain this???

Neural network architecture. The input to the policy network is a $\underline{19 \times 19 \times 48}$ image stack consisting of 48 feature planes. The first hidden layer zero pads the input into a 23 \times 23 image, then convolves k filters of kernel size 5 \times 5 with stride 1 with the input image and applies a rectifier nonlinearity. Each of the subsequent hidden layers 2 to 12 zero pads the respective previous hidden layer into a 21×21 image, then convolves k filters of kernel size 3×3 with stride 1, again followed by a rectifier nonlinearity. The final layer convolves 1 filter of kernel size 1×1 with stride 1 with a different bias for each position and applies a softmax func-Alpha Go does not use Max Pooling Extended tion. The Data Table 3 additionally show the results of training with k = 128, 256 and 384 filters.

Variants of Neural Networks

Convolutional Neural Network (CNN)

Recurrent Neural Network

(RNN)

Neural Network with Memory

Example Application

Slot Filling

Example Application

Solving slot filling by Feedforward network?

Input: a word

(Each word is represented as a vector)

1-of-N encoding

How to represent each word as a vector?

to a word in the lexicon

```
1-of-N Encodinglexicon = {apple, bag, cat, dog, elephant}The vector is lexicon size.apple = \begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix}Each dimension correspondsbag = \begin{bmatrix} 0 & 1 & 0 & 0 \end{bmatrix}
```

The dimension for the word $dog = [0 \ 0 \ 1 \ 0]$

cat = $[0 \ 0 \ 1 \ 0 \ 0]$

is 1, and others are 0 elephant $= [0 \ 0 \ 0 \ 1]$

Beyond 1-of-N encoding

Dimension for "Other"

Word hashing

Example Application

time of

Solving slot filling by Feedforward network?

Input: a word

(Each word is represented as a vector)

Output:

Probability distribution that the input word belonging to the slots

Example Application

time of

Three Steps for Deep Learning

Deep Learning is so simple

Recurrent Neural Network (RNN)

RNN The same network is used again and again.

RNN

Different

Of course it can be deep ...

Bidirectional RNN

Long Short-term Memory (LSTM)

LSTM

LSTM

LSTM

Extension: "peephole"

Multiple-layer ct+1 **LSTM** Don't worry if you cannot understand this. Keras can handle it. Keras supports ct+1 "LSTM", "GRU", "SimpleRNN" layers This is quite standard now.

https://img.komicolle.org/2015-09-20/src/14426967627131.gif

Three Steps for Deep Learning

Deep Learning is so simple

Learning Target

Three Steps for Deep Learning

Deep Learning is so simple

Learning

RNN Learning is very difficult in practice.

Unfortunately

 RNN-based network is not always easy to learn
 Real experiments on Language modeling

sometimes **Total Loss** Lucky 2 13 14 15 16 17 18 19 20 21 22 23 **Epoch**

The error surface is rough.

Why?

Helpful Techniques

- Long Short-term Memory (LSTM)
 - Can deal with gradient vanishing (not gradient explode)
 - Memory and input are added
 - ➤ The influence never disappears unless forget gate is closed

No Gradient vanishing (If forget gate is

Gated Recurrent Unit (GRU): simpler than LSTM

Helpful Techniques

Clockwise RNN

[Jan Koutnik, JMLR'14]

Structurally Constrained Recurrent Network (SCRN)

[Tomas Mikolov, ICLR'15]

Vanilla RNN Initialized with Identity matrix + ReLU activation function [Quoc V. Le, arXiv'15]

Outperform or be comparable with LSTM in 4 different tasks

More Applications

Many to one

Input is a vector sequence, but output is only one vector

Input is a vector sequence, but output is only one vector

Many to Many (Output is shorter)

- Both input and output are both sequences, <u>but the output is</u>
 <u>shorter.</u>
 - E.g. Speech Recognition

Many to Many (Output is shorter)

- Both input and output are both sequences, <u>but the output is</u> shorter.
- Connectionist Temporal Classification (CTC) [Alex Graves, ICML'06]
 [Alex Graves, ICML'14] [Haşim Sak, Interspeech'15] [Jie Li, Interspeech'15] [Andrew Senior, ASRU'15]

Many to Many (No Limitation)

- Both input and output are both sequences <u>with different</u>
 <u>lengths</u>. → <u>Sequence to sequence learning</u>
 - E.g. <u>Machine Translation</u> (machine learning→机器学习)

Many to Many (No Limitation)

- Both input and output are both sequences <u>with different</u>
 <u>lengths</u>. → <u>Sequence to sequence learning</u>
 - E.g. *Machine Translation* (machine learning→机

Many to Many (No Limitation)

- Both input and output are both sequences <u>with different</u>
 <u>lengths</u>. → <u>Sequence to sequence learning</u>
 - E.g. *Machine Translation* (machine learning→机

Image Caption Generation

Input an image, but output a sequence of words

Chat-bot

movie (~40,000 sentences), presidential debate...