
Hadoop 
 
Decisions, Operations & Information Technologies 
Robert H. Smith School of Business 
Fall, 2020 

K. Zhang BUDT 758 



Distributed processing is non-trivial   

•  How to assign tasks to different workers in an 
efficient way? 

•  What happens if tasks fail? 
•  How do workers exchange results? 
•  How to synchronize distributed tasks 

allocated to different workers? 

11/3/20	   BUDT	  758	   2	  



Big data storage is challenging 

•  Data volumes are massive 
•  Reliability of storing PBs of data is challenging 
•  All kinds of failures: Disk/Hardware/Network 

Failures 
•  Probability of failures simply increase with the 

number of machines … 

11/3/20	   BUDT	  758	   3	  



One popular solution: Hadoop  

Hadoop Cluster at Yahoo! 
11/3/20	   BUDT	  758	   4	  



Hadoop offers 

•  Redundant, Fault-tolerant data storage 
•  Parallel computation framework 
•  Job coordination 

11/3/20	   BUDT	  758	   5	  



Hadoop offers 

•  Redundant, Fault-tolerant data storage 
•  Parallel computation framework 
•  Job coordination 

Programmers 

No longer need to 
worry about  

Q: Where file is 
located?  

Q: How to handle 
failures & data lost? 

Q: How to divide 
computation?  

Q: How to program 
for scaling? 

11/3/20	   BUDT	  758	   6	  



A little history on Hadoop 

•  Hadoop is an open-source implementation 
based on Google File System (GFS) and 
MapReduce from Google 

•  Hadoop was created by Doug Cutting and 
Mike Cafarella in 2005 

•  Hadoop was donated to Apache in 2006 

11/3/20	   BUDT	  758	   7	  



Who uses Hadoop? 

8 

Homeland Security 

Real Time Search 

Social	  

eCommerce 

User	  Tracking	  &	  
Engagement	  

Financial Services  

11/3/20	   BUDT	  758	  



11/3/20 BUDT 758 9 

Who uses Hadoop? 

Who Uses Hadoop ?!



Why HDFS? 

•  Problem 1: Data is too big to store on 
one machine. 

 
•  HDFS: Store the data on multiple 

machines! 

11/3/20	   BUDT	  758	   10	  



Why HDFS? 

•  Problem 2: Very high end machines 
are too expensive 

 
•  HDFS: Run on commodity hardware! 

11/3/20	   BUDT	  758	   11	  



Why HDFS? 

•  Problem 3: Commodity hardware can 
fail 

 
•  HDFS: Software is intelligent enough 

to handle hardware failure! 

11/3/20	   BUDT	  758	   12	  



Why HDFS? 

•  Problem 4: What happens to the 
data if the machine storing the data 
fails? 

 
•  HDFS: Replicate the data! 

11/3/20	   BUDT	  758	   13	  



Why HDFS? 

•  Problem 5: How can distributed 
machines organize the data in a 
coordinated way?  

 
•  HDFS: Master-Slave Architecture! 

11/3/20	   BUDT	  758	   14	  



11/3/20 BUDT 758 15 

Another reason why Hadoop 

•  Scan 100TB datasets on a 1000-node cluster  
o Remote storage @ 10MB/s = 165 mins 
o Local storage @ 50-200MB/s = 33-8 mins 

•  Moving computation is more efficient than 
moving data 

•  Need fault tolerant store with reasonable 
availability guarantees 
o Handle hardware faults transparently 



11/3/20 BUDT 758 16 

Hadoop goals 

•  Scalable: Petabytes (1015 Bytes) of data 
on thousands on nodes 

•  Economical: Commodity components 
only 

•  Reliable: fault tolerance 



11/3/20	   BUDT	  758	   17	  

Hadoop big picture 



11/3/20 BUDT 758 18 

High-level architecture of Hadoop 



11/3/20 BUDT 758 19 

Hadoop big picture Hadoop: Big Picture 

6 

Distributed File system 

Execution engine 

High-level languages 

Distributed 
light-weight DB 

Centralized tool 
for coordination 

HDFS + MapReduce are enough to have things working 



11/3/20 BUDT 758 20 

Hadoop architecture 



HDFS architecture 

Name Node (NN) 

Data Node (DN) 

Multiple-Rack Cluster 
Switch Switch 

Rack 1 

Secondary Name Node 
(SNN) 

Data Node (DN) Data Node (DN) 

Rack 2 Rack N . . .  
11/3/20	   BUDT	  758	   21	  



11/3/20 BUDT 758 22 

HDFS 

•  Master-Slave architecture 
•  Single NameNode 

q Sometimes a backup: secondary NameNode 
•  Many (Thousands) DataNodes 
•  Files are split into fixed sized blocks and 

stored on data nodes 
•  Data blocks are replicated for fault 

tolerance and fast access (default: 3) 



11/3/20 BUDT 758 23 

HDFS – Master (NameNode) 

•  Manages file system (FS) namespace 
•  File metadata 
•  Mapping file to list of blocks 
•  Authorization & Authentication  
•  Mapping of datanode to list of blocks 
•  Monitor datanode health 
•  Replicate missing blocks 
•  Keeps ALL namespace in memory 



11/3/20 BUDT 758 24 

HDFS – Slave (DataNode) 

•  Handle block storage on multiple volumes 
& block integrity 

•  Clients access the blocks directly from 
data nodes 

•  Periodically send heartbeats and block 
reports to NameNode 

•  Blocks are stored as underlying OS’s files 



HDFS Name Node 

Filename	   Replica,on	  factor	   Block	  ID	  

File	  1	   3	   [1,	  2,	  3]	  

File	  2	   2	   [4,	  5,	  6]	  

File	  3	   1	   [7,8]	  

1, 2, 5, 7, 
4, 3 

1, 5, 3, 
 2, 8, 6 

1, 4, 3, 
 2, 6 

Name Node 

Data Nodes 

Snapshot of FS Edit log: record 
changes to FS 

11/3/20	   BUDT	  758	   25	  



HDFS architecture 

Name Node (NN) 

Data Node (DN) 

Multiple-Rack Cluster 
Switch Switch 

Rack 1 

Secondary Name Node 
(SNN) 

Data Node (DN) Data Node (DN) 

Rack 2 Rack N . . .  
11/3/20	   BUDT	  758	   26	  

NN will 
replicate lost 

blocks in 
another 
node J 

I know all 
blocks and 
replicas! 

Reliable 
Storage 



HDFS architecture 

Name Node (NN) 

Data Node (DN) 

Multiple-Rack Cluster 
Switch Switch 

Rack 1 

Secondary Name Node 
(SNN) 

Data Node (DN) Data Node (DN) 

Rack 2 Rack N . . .  

NN will 
replicate lost 

blocks 
across racks 

J 

I know the 
topology of 
the cluster! 

Rack 
Awareness 

11/3/20	   BUDT	  758	   27	  



HDFS architecture 

Name Node (NN) 

Data Node (DN) 

Multiple-Rack Cluster 
Switch Switch 

Rack 1 

Secondary Name Node 
(SNN) 

Data Node (DN) Data Node (DN) 

Rack 2 Rack N . . .  

Do not ask 
me, I am 
down L 

Single Point 
of Failure 

11/3/20	   BUDT	  758	   28	  



HDFS architecture 

Name Node (NN) 

Data Node (DN) 

Multiple-Rack Cluster 
Switch Switch 

Rack 1 

Secondary Name Node 
(SNN) 

Data Node (DN) Data Node (DN) 

Rack 2 Rack N . . .  

Keep bulky 
communication 
within a rack! 

How about 
network 

performance? 

11/3/20	   BUDT	  758	   29	  



HDFS Inside: Name Node 
Name Node 

Data Nodes 

 FS image 

Edit log 

Secondary Name Node 

 FS image 

Edit log 

Periodically  

-  House Keeping  
-  Backup NN Meta 

Data 

11/3/20	   BUDT	  758	   30	  



HDFS Inside: Blocks 

•  Q: Why do we need the abstraction 
“Blocks” in addition to “Files”? 

•   Reasons: 
•  File can be larger than a single disk 
•  Block is of fixed size, easy to manage and 

manipulate 
•  Easy to replicate and do more fine grained 

load balancing 
 
11/3/20	   BUDT	  758	   31	  



HDFS Inside: Blocks 

•  HDFS Block size is by default 64 MB, why 
it is much larger than regular file system 
block? 

•   Reasons: 
•  Minimize overhead: disk seek time is almost 

constant 

11/3/20	   BUDT	  758	   32	  



HDFS Inside: Read 

Client 

Name Node 

DN1 DN2 DN3 DNn	  .	  .	  .	  

1

2

3 4

1.  Client connects to NN to read data 
2.  NN tells client where to find the data blocks 
3.  Client reads blocks directly from data nodes (without going through NN) 
4.  In case of node failures, client connects to another node that serves the 

missing block 
11/3/20	   BUDT	  758	   33	  



HDFS Inside: Read 

•  Q: Why does HDFS choose such a design 
for read? Why not ask client to read blocks 
through NN? 

•   Reasons: 
•  Prevent NN from being the bottleneck of the 

cluster 
•  Allow HDFS to scale to large number of 

concurrent clients 
•  Spread the data traffic across the cluster 

 
11/3/20	   BUDT	  758	   34	  



HDFS Inside: Read 

•  Q: Given multiple replicas of the same 
block, how does NN decide which replica 
the client should read? 

•   HDFS Solution: 
•  Rack awareness based on network topology 

	  

11/3/20	   BUDT	  758	   35	  



HDFS network topology 

•  The critical resource in HDFS is bandwidth, 
distance is defined based on that 

•  Measuring bandwidths between any pair of 
nodes is too complex and does not scale 

•  Basic Idea:  
q Processes on the same node 
q Different nodes on the same rack 
q Nodes on different racks in the same 
    data center (cluster) 
q Nodes in different data centers 

Bandwidth 
becomes less 

11/3/20	   BUDT	  758	   36	  



HDFS network topology 
•  HDFS takes a simple approach:  

q See the network as a tree 
q Distance between two nodes is the sum of 

their distances to their closest common 
ancestor 

Rack 3 

n5 

n6 

Rack 4 

n7 

n8 

Data center 2 

Rack	  1	  

n1	  

n2	  

Rack	  2	  

n3	  

n4	  

Data center 1 11/3/20	   BUDT	  758	   37	  



HDFS network topology 
•  What are the distance of the following 

pairs: 
Dist(d1/r1/n1, d1/r1/n1)=  
Dist(d1/r1/n1, d1/r1/n2)= 
Dist(d1/r1/n1, d1/r2/n3)=   
Dist(d1/r1/n1, d2/r3/n6)= 

Rack	  3	  

n5	  

n6	  

Rack	  4	  

n7	  

n8	  

Data	  center	  2	  

Rack	  1	  

n1	  

n2	  

Rack	  2	  

n3	  

n4	  

Data	  center	  1	  

0 

2 
4 
6 

11/3/20	   BUDT	  758	   38	  



HDFS Inside: Write 

Client 

Name Node 

DN1 DN2 DN3 DNn . . . 

1

2

3

4

1.  Client connects to NN to write data 
2.  NN tells client write these data nodes 
3.  Client writes blocks directly to data nodes  with desired replication factor 
4.  In case of node failures, NN will figure it out and replicate the missing blocks 

11/3/20	   BUDT	  758	   39	  



o  Frist copy is written to the local 
node (write affinity). 

o  Second copy is written to a 
DataNode within a remote 
rack. 

o  Third copy is written to a 
DataNode in the same remote 
rack. 

o  Additional replicas are 
randomly placed. 

Data replication 

Objectives: load balancing, fast access, fault tolerance. 
11/3/20 BUDT 758 40 



HDFS Inside: Write 
•  Replication Strategy vs Tradeoffs 

Reliability Write 
Bandwidth 

Read 
Bandwidth 

Put all replicas on one 
node 

Put all replicas on 
different racks 

11/3/20	   BUDT	  758	   41	  



HDFS Inside: Write 
•  Replication Strategy vs Tradeoffs 

Reliability Write 
Bandwidth 

Read 
Bandwidth 

Put all replicas on one 
node 

Put all replicas on 
different racks 

HDFS:  
1-> same node as client 
2-> a node on different 
rack  
3-> a different node on 
the same rack as 2 

11/3/20	   BUDT	  758	   42	  



11/3/20 BUDT 758 43 

MapReduce: Hadoop execution layer 
•  JobTracker knows everything about submitted jobs 
•  Divides jobs into tasks and decides where to run 

each task 
•  Continuously communicating with TaskTracker 

•  TaskTracker execute task (multiple tasks per 
node) 

•  Monitors the execution of each task 
•  Continuously sending feedback to JobTracker 


