9/28/2020 758B-Lab-1.ipynb - Colaboratory

~ Load data

load text data and convert the label/sentiment into corresponding numeric values:
possible packages you might need are: pandas, numpy

import pandas as pd
import numpy as np

read the training data

get texts and labels

show the first 5 records
df train.head()

G text sentiment labels
0 Heres a single to add to Kindle. Just read t... neutral 1
1 If you tire of Non-Fiction.. Check out http://... neutral 1
2 Ghost of Round Island is supposedly nonfiction. neutral 1
3 Why is Barnes and Nobles version of the Kindle... negative 0
4 @Maria: Do you mean the Nook? Be careful bo... positive 2

~ Preprocess dat

preprocess the loaded textual data, including removing stopwords, stemming, and tok
represent each document (i.e., comment) using TF-IDF strategy. The features are the
possible packages you might need are: scikit-learn, numpy
from sklearn.feature extraction.text import TfidfVectorizer

tokenize and create a document-feature matrix X and a label vector Y
print out the shape of X and Y
print(X.shape,',',Y.shape)

https://colab.research.google.com/drive/1eKrZ5t61q-hFOyvbFOgIUwbb-2nG5BLP#scrollTo=cAoFU7Tyyp-d&printMode=true 1/5

9/28/2020 758B-Lab-1.ipynb - Colaboratory

> (1999. 500V . (1999.)

~ Traditional Machine Learning Models: Random Forest

using 10-fold cross-validation to show the prediction accuracy
possible packages you might need are: scikit-learn, numpy

from sklearn.model selection import KFold
from sklearn.ensemble import RandomForestClassifier

print("Random Forest - mean: %.4f%% (std: +/- %.4f%%)" % (np.mean(rf cvscores)*100, n

[> Random Forest - mean: 64.1332% (std: +/- 2.0919%)

~ Fully connected feedforward Neural Network

Design your own network with the following requirements:

1. Having dropout

2. Separate the dataset into training and validation (80-20%)

3. The prediction accuracy on the validation set should be at least 50% for this 3-

possible packages you might need are: scikit-learn, numpy, torch
import numpy as np

import torch

import torch.nn as nn

import torch.nn.functional as F

from torch.utils.data import TensorDataset, Dataloader

import torch.optim as optim
¢ Build the train loader and validation loader

convert your numpy array to TensorDataset and create a data loader for training and
some hyperparameters: input dimension, output dimension, batch size, number of epoc
epochs = 5

lr = le-4

indim = X.shape[l]

outdim = 3

drate = 0.7

batch size = 16

https://colab.research.google.com/drive/1eKrZ5t61q-hFOyvbFOgIUwbb-2nG5BLP#scrollTo=cAoFU7Tyyp-d&printMode=true 2/5

9/28/2020 758B-Lab-1.ipynb - Colaboratory

¢ Build the network

create your model/network
class SentimentNetwork(nn.Module):

def _ init (self, input_dim, output_dim, dropout_rate):

super (SentimentNetwork,self). init_ ()

def forward(self,x):

return x

create a model
model = SentimentNetwork(indim,outdim,drate)
print (model)
[> SentimentNetwork(
(fcl): Linear(in_ features=500, out features=100, bias=True)
(dropout): Dropout(p=0.7, inplace=False)

(fc2): Linear(in features=100, out features=50, bias=True)
(fc3): Linear(in_ features=50, out features=3, bias=True)

e Create a training function to train the model and an evaluation function to evaluate the
performance on the separate validation set

define a training process function
def train(model, train loader, optimizer, criterion):

epoch loss, epoch acc = 0.0,0.0 # the loss and accuracy for each epoch

model.train()

return epoch loss, epoch acc

define a validation/evaluation process function
def evaluate(model, val loader, criterion):

epoch loss, epoch acc = 0.0,0.0 # the loss and accuracy for each epoch

model.eval()

rrid+h +FArAh nA ~vAa AN

https://colab.research.google.com/drive/1eKrZ5t61q-hFOyvbFOgIUwbb-2nG5BLP#scrollTo=cAoFU7Tyyp-d&printMode=true 3/5

9/28/2020 758B-Lab-1.ipynb - Colaboratory

Wllll LULCLIL. LIV YyLrauy|).

return epoch loss, epoch acc

e Main starting point: train the model and evaluate the model

define the loss function and optimizer

real training and evaluation process
for epoch in range(epochs):
train loss, train acc = train(model, train loader, optimizer, criterion)

valid loss, valid acc evaluate(model, val loader, criterion)

print (f'Epoch: {epoch+1:02}")
print(f'\tTrain Loss: {train loss:.4f} | Train Acc: {train acc:.4f}"')

print(f'\t Val. Loss: {valid loss:.4f} | Val. Acc: {valid acc:.4f}")

[»> /usr/local/lib/python3.6/dist-packages/ipykernel_launcher.py:18: UserWarning:

Epoch: 01
Train Loss: 0.7994 | Train Acc: 0.6475
Val. Loss: 0.8105 | Val. Acc: 0.6150
Epoch: 02

o

Train Loss: 0.8040 | Train Acc: 0.6475

Val. Loss: 0.8024 | Val. Acc: 0.6150
Epoch: 03

Train Loss: 0.7895 | Train Acc: 0.6475

Val. Loss: 0.7940 | Val. Acc: 0.6150
Epoch: 04

Train Loss: 0.7817 | Train Acc: 0.6475

Val. Loss: 0.7853 | Val. Acc: 0.6150
Epoch: 05

Train Loss: 0.7686 | Train Acc: 0.6469

Val. Loss: 0.7758 | Val. Acc: 0.6150

o

o

o

https://colab.research.google.com/drive/1eKrZ5t61q-hFOyvbFOgIUwbb-2nG5BLP#scrollTo=cAoFU7Tyyp-d&printMode=true

In

4/5

9/28/2020 758B-Lab-1.ipynb - Colaboratory

https://colab.research.google.com/drive/1eKrZ5t61q-hFOyvbFOgIUwbb-2nG5BLP#scrollTo=cAoFU7Tyyp-d&printMode=true

5/5

