11/6/2020 758B-Lab-3.ipynb - Colaboratory

from google.colab import files, drive

drive.mount('/content/drive/"')

using ~“TfidfVectorizer ™ from sklearn to generate tf-idf values for every word in each document.

read 500 documents from positive reviews and another 500 documents from negative reviews (you are
allowed to read more documents).

please set "max features ™ to 200 when you build the tfidf vectorizer, meaning that we only use
top 200 words to form our vocabulary V.

In this section, you need to construct the training set (#documents,#max length among documents,
Vocabulary size)

For each word in a document, you use the onehot encoding-like vector representation except that

we use the tfidf value calculated in the previous step if that word appears in that document,

rather than 1. The dimension of this vector is the size of the vocabulary. For example, if a word w

in document d is the 3rd word in the vocabulary, this word is represented as (0,0,tfidf(w,d),0,0,...0).
If the length of a document (1) is less than the max length(L), word 1, word 2, ..., word L-1 are

represented as zero vectors (0,0,...,0).

Meanwhile, you also need to generate labels (#documents, 2) since this is a binary classification
problem.

v DatalLoaders - train loader and valiation loader

https://colab.research.google.com/drive/1 yGsReX5SWWW5ZgA356tthAWNqgEInc6CS#scroll To=bCc2a9d As 1 R6&printMode=true 1/4

11/6/2020

Create train loader and validation loader

v Model: a general framework for multi-layer RNN

depth

hg,co

758B-Lab-3.ipynb - Colaboratory

'

'I?..

L=
T

h

?

==

_F]

eed el |

e

Xl

Eu;

oo el

Y
X2

()
[-1

h™

-] ¥

fwj

input

https://colab.research.google.com/drive/1 yGsReX5SWWW5ZgA356tthAWNqgEInc6CS#scroll To=bCc2a9d As 1 R6&printMode=true

2/4

11/6/2020 758B-Lab-3.ipynb - Colaboratory

from future import unicode literals, print function, division

import torch

import torch.nn as nn

import torch.nn.functional as F
import torch.optim as optim

class Model (nn.Module):

def _ init (self, input_size, output_size, hidden_size, n_layers):
super(). init ()

self.hidden size = hidden_ size
self.n layers = n_layers

self.rnn = nn.RNN(input size,hidden size,n layers,batch first=True) # rnn layer
self.fcl nn.Linear (hidden size,output size) # rnn output (y_t) --> output (y'_t)
self.fc2 nn.Linear (output size,2) #the output from the last time period ->sentiment prediction

def forward(self,x, hidden):
batch size = x.size()[0]

hidden = self.init hidden(batch size)
rnn_out,hidden = self.rnn(x,hidden)
rnn_out = self.fcl(rnn_out)

last out = rnn out[:,-1,:].view(batch size,-1)
out = F.softmax(self.fc2(last out))

return out,hidden
def init hidden(self,batch size):
hidden = torch.zeros(self.n layers, batch size, self.hidden size).cuda()

return hidden

model = Model(200,32,256,3)
print (model)

https://colab.research.google.com/drive/1 yGsReX5SWWW5ZgA356tthAWNqgEInc6CS#scroll To=bCc2a9d As 1 R6&printMode=true

3/4

11/6/2020 758B-Lab-3.ipynb - Colaboratory

v Training

training and validating process

You need to print out the following message for every batch in each epoch.

print('Epoch:{}/{}'.format(epoch,n epochs), # epoch is the index of epoch
'Batch:{}'.format(b), # b is the index of batch

'Train Loss:{:.5f}'.format(train loss),
'Val Loss:{:.5f}'.format(val loss))

https://colab.research.google.com/drive/1 yGsReX5SWWW5ZgA356tthAWNqgEInc6CS#scroll To=bCc2a9d As 1 R6&printMode=true 4/4

